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1.0 INTRODUCTION 

1.1 PURPOSE 

The Algorithm Theoretical Baseline Document (ATBD) provides a detailed description of the algorithms 

that are developed within the Pioneer Earth Observation apPlications for the Environment Ecosystem 

Restoration (PEOPLE-ER) project financed by the European Space Agency (ESA). PEOPLE-ER aims 

to develop innovative high-quality Earth observation (EO) based application products, indicators, and 

methods, targeting ER research and development (R&D) priorities.  

The purpose of this document is to describe the algorithm theoretical baseline for each of the PEOPLE-

ER solutions:  

1. Vegetation Spectral Recovery – a method for analysis of time series of high-resolution multi-

spectral imagery to assess spectral vegetation index recovery metrics that can be linked to

structural or functional recovery.

2. KNN estimation of forest structural variables – a method for deriving forest structural

variable (e.g., height, diameter, basal area and volume) estimation by combining field reference

data and EO datasets.

3. Wetland Function Recovery – a method for analysis of time series of high-resolution radar

imagery to assess surface water dynamics in natural to heavily modified wetland ecosystems

that can be linked to wetland functions or floodplain connectivity.

1.2 TARGET AUDIENCE 

This document targets: 

1. Remote sensing experts interested in the analysis of EO time series for ecosystem restoration

assessment.

2. ER practitioners and users of EO-derived products who want to obtain a more in-depth

understanding of the algorithms.
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2.0 VEGETATION SPECTRAL RECOVERY 

2.1 OBJECTIVE 

The objective of the PEOPLE-ER Vegetation Spectral Recovery solution is a method to assess a time 

series of multi-spectral satellite data using spectral vegetation indexes (VIs) to generate metrics related 

to forest vegetation recovery. The algorithm is able to use a variety of VIs, spatial or temporal reference 

conditions, and generate several recovery metrics. The solution should support applications in a wide 

variety of contexts, with flexible reference conditions enabling integration with current ER initiatives and 

guidelines. The output raster products will be suitable for further analysis.  

2.2 SCIENTIFIC BASIS  

Remote sensing of ER offers a solution in continuous monitoring of large spatial and temporal extents. 

Free and open satellite observation programs such as Landsat and Sentinel-2 have increased ER 

monitoring potential (Wulder et al. 2012), with further development of VIs and remotely sensed essential 

biodiversity variables (RS-EBVs). VIs and RS-EBVs enable the extraction of vegetation health and 

recovery metrics (Skidmore et al. 2021), subsequently allowing estimation of ecosystem vegetation 

structure, diversity, and functioning (Cabello et al. 2012; Cordell et al. 2017).  

Following the opening of the Landsat archive and increased availability of multi-spectral ARD, time 

series composites have been widely used for assessing land cover, land cover change, and ecosystem 

and vegetation health (Woodcock et al. 2008; Senf 2022). This has resulted in rapid development of 

methodologies and algorithms which support the use of remote sensing for ER monitoring (Banskota 

et al. 2014; Cordell et al. 2017). These improvements have aimed to increase the effectiveness and 

reduce error of time series analyses and include composite methodologies, noise reduction techniques, 

change or trend detection algorithms, indices, and metrics. Subsequently this has resulted in transitions 

in the use of remotely sensed time series: detection of disturbances to regrowth, characterizing of abrupt 

changes to gradual changes, and the observation of transitional change to conditional change 

(Woodcock et al. 2020). Together, these improvements enable the use of time series analysis to monitor 

ecosystem conditions. 

Vegetation Indices 

The use of spectral variables as proxies for vegetation conditions is well established and includes 

spectral bands, ratio indices (e.g., NDVI), tasseled cap indices (e.g., Tasseled Cap Wetness), and 

spectral mixture analysis indices (Banskota et al. 2014). VIs have been specifically developed to 

maximize reflectance signals in a way that maximizes vegetation spectral signatures, providing 

information about the status of vegetation (Zeng et al. 2022). (Cabello et al. 2012). For example, NDVI 

can be used as a proxy for net primary production which is an essential process for ecosystem 

functioning (Cabello et al. 2012). (Skidmore et al. 2021). 

Different VIs provide distinct information depending on the spectral bands or wavelengths involved, as 

well as the transformation that occurs in the calculation of the indices. For instance, SWIR-based 

(shortwave infrared) VIs are often used for estimating vegetation moisture content as some SWIR 

wavelengths are strongly absorbed by water (Zeng et al. 2022). Commonly used indices for monitoring 

vegetation conditions include NBR (Normalized Burn Ratio), EVI (Enhanced Vegetation Index), TCB 

(Tasseled Cap Brightness), TCW (Tasseled Cap Wetness), TCG (Tasseled Cap Greenness), NDMI 

(Normalized Difference Moisture Index), with NDVI (Normalized Difference Vegetation Index) being the 
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most popular index (Cohen et al. 2018; Huang et al. 2021; Zeng et al. 2022). While most vegetation 

monitoring studies have focused on only one or a small number of indices, research suggests that using 

a multitude of indices is most appropriate for monitoring recovery as it provides a more complete picture 

of ground conditions (Cohen et al. 2018). 

In addition to providing distinct information concerning the structural or functional conditions of 

vegetation, (Kennedy et al. 2010) note that different VIs may be more effective for subtle or gradual 

change detection, as they found that NBR and TCW have greater efficacy for long-term trends than 

NDVI. (Pickell et al. 2016) and (Schroeder et al. 2011) echoed the finding, both finding that NDVI is 

adequate for short-term recovery detection but does not provide recovery information after five years 

post-disturbance. This is due to rapid saturation effects of spectral indices, such as NDVI (Schroeder 

et al. 2011; Pickell et al. 2016). Thus, the incorporation of a suite of VIs into the spectral recovery tool 

provides the user with a comprehensive look at a multitude of vegetation and ecosystem characteristics, 

while also enabling the assessment of both short-term and long-term recovery trends. This fits current 

ER guidelines, which try to incorporate measures of diversity or abundance, ecosystem structure, and 

ecosystem functioning into estimates of ecosystem recovery (Ruiz-Jaen and Mitchell Aide 2005; Gann 

et al. 2019). 

The value of using VIs for analysis is demonstrated by the development of a spectral indices package 

which offers a standardized catalogue of 234 indices readily implemented into a project environment 

(Montero et al. 2023). The Python package, called Spyndex, provides this project with a number of 

standardized VI equations, which were integrated into the spectral recovery tool. Further information 

about the formulas used in the calculations of these indices can be found in Montero et al.'s (2023) 

paper.  

Recovery Metrics 

Ecosystem recovery can be measured using recovery metrics, which utilize trends or trajectories, 

segments, and breakpoints of time series spectral data to characterize changes in conditions through 

time (Wulder et al. 2019). Recovery metrics used in prior time series analyses include RI (Recovery 

Indicator), RRI (Relative Recovery Indicator), Y2R (Years to Recovery), R80P (Ratio of 80P), 

ΔNBRregrowth, and YrYr (Year on Year Average) (Frazier et al. 2018; De Keersmaecker et al. 2022). 

2018). As with VIs, recovery metrics present distinct and complementary information about ecosystem 

recovery.  

Recovery metrics can be modified to better suit study objectives (Frazier et al. 2018). For example, 

R80P was derived from Y2R, whilst (Frazier et al. 2018) modified the popular Recovery Indicator (RI) 

metric to create the Relative Recovery Indicator (RRI) metric, more appropriate to their analysis of 

unfitted spectral data. Consequently, previous analyses justify this project’s modifications of recovery 

metrics. Modifications include the application of ΔNBRregrowth to multiple indices (e.g., the absolute 

change in any index from the start of restoration to five years later), as well as flexibility in defining the 

years to use for spectral values within the recovery metric calculations. The inclusion of multiple 

established and modified recovery metrics in the spectral recovery tool gives extensive information 

about current and potential recovery progress. 

There are numerous successful time series analyses which use multi-spectral information to determine 

recovery progress. For example, (Pickell et al. 2016) calculated Y2R to characterize the recovery trends 

of multiple indices, including NBR, NDVI, and TCG, for disturbed North American boreal forests 

between 1985 and 2010. (Frazier et al. 2018) used a temporal segmentation and Thiel-Sen regression 
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approach to characterize annual unfitted time series and calculate RRI, R80P, and YrYr. (White et al. 

2022) used the ΔNBRregrowth and Y2R metrics, validated with ALS (airborne laser scanning) data, to 

estimate baseline recovery rates for Canadian ecozones. Similarly, (White et al. 2017) performed a 

short-term and long-term recovery analysis, extracting ΔNBRregrowth, RI, and Y2R using segmentation 

and fitted trajectory curves. Validation for these analyses often use ground measurements or ALS, 

however Woodcock et al. (2020) argue that field data and ALS are often unattainable due to large study 

areas and a lack of resources, and in their absence, manual visual interpretation of high spatial 

resolution imagery has proven adequate for validation datasets. Previous research has thus established 

multi-spectral time series analysis as a worthwhile approach to determine a wealth of information about 

vegetation conditions over large spatial and temporal extents.  

Overall, the utilization of time series analysis for the extraction of recovery metrics measuring changes 

in spectral indices can consequently be used to monitor recovery of vegetation and ecosystem 

conditions. 

Recovery metrics equation variables 

Variable  Description  

Ds  Index value: Disturbance start  

De  Index value: Disturbance end  

Dpre  Index value: Pre-disturbance (average of 2 years prior to Ds)  

Daverage  Index value: average value from Ds to De  

R0  Index value: Restoration start (usually 1 year after De)  

Ri  Index value: years after R0, subscripts indicate the # of years  

Rcurrent  Index value: current time step or last year of time series  

Rtarget  Index value: recovery target  

Rslope  Recovery slope/rate  

P  Percent, user-defined, default is 80  

t  Years/time step 

 

RRI (Relative Recovery Indicator) 

The RRI provides unique information in that the recovery magnitude is divided by the magnitude of the 

disturbance, meaning the recovery is scaled to the disturbance severity (Kennedy et al. 2012; Frazier 

et al. 2018).  

𝑚𝑎𝑥⁡(𝑅5,𝑅4)−⁡𝑅0

𝐷𝑠−⁡𝐷𝑒
  

 

Y2R (Years to Recovery) 

Y2R has typically represented the number of years required for the restoration site to reach 80% of its 

pre-disturbance condition, providing an estimate of how long the recovery process takes (Pickell et al. 

2016; White et al. 2017; White et al. 2018).  
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𝑖⁡𝑤ℎ𝑒𝑟𝑒⁡𝑅𝑖 =⁡𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑃  

Default: 

𝑖⁡𝑤ℎ𝑒𝑟𝑒⁡𝑅𝑖 =⁡𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 0.8  

R80P (Ratio of 80P) 

R80P compares the current condition of an ecosystem to target conditions, as the extent to which a 

pixel has reached 80% of pre-disturbance values (Frazier et al. 2018; De Keersmaecker et al. 2022).  

𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑅𝑡𝑎𝑟𝑔𝑒𝑡∗𝑃
  

OR 
max⁡(𝑅5,𝑅4)

𝑅𝑡𝑎𝑟𝑔𝑒𝑡∗𝑃
  

ΔNBRregrowth (change in NBR from the start of the restoration process to five years after) 

ΔNBRregrowth is the absolute change in NBR from the start of the restoration process to five years after 

(White et al. 2017; White et al. 2022). ΔNBRregrowth provides a recovery rate distinct from the reference 

conditions and thus provides a more direct measure of regrowth. 

𝑅𝑖 − 𝑅0  
 

Default: 
 

𝑅5 − 𝑅0  

YrYr (Year on Year Average) 

YrYr uses the rate of recovery, or spectral trajectory, to determine the average annual rate of spectral 

change (Frazier et al. 2018; De Keersmaecker et al. 2022). YrYr provides a recovery rate distinct from 

the reference conditions and thus provides a more direct measure of regrowth. 

𝑅𝑖−𝑅0

∆𝑡(𝑅𝑖−𝑅0)
  

 
Default: 

 
𝑅5−𝑅0

5
  

2.3 USE CASES 

The primary use case for the PEOPLE-ER Spectral Recovery tool is a user who has administered or is 

monitoring an ER intervention and wants to assess the efficacy of the intervention using remote 

sensing-based recovery metrics. 

The user may wish to: 

▪ Determine recovery from a historic perspective – assess a restoration area’s recovery with 

metrics that use a historic period (prior to ER) as the target conditions. 

▪ Determine recovery from a reference site(s) perspective – assess a restoration area’s recovery 

with metrics based on reference site(s) and a reference period as the target conditions. 

▪ Determine relevant metrics – generate multiple ER metrics to determine which most effectively 

assess various aspects of recovery (e.g., structure, landscape) over an area of interest (AOI). 
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In Scope / Out of Scope 

In scope features of the PEOPLE-ER Spectral Recovery tool are: 

▪ Multi-spectral recovery metrics for restoration site(s). 

▪ Generation of a recovery baseline from reference period (prior to ER) or from reference site(s). 

▪ Computation of spectral indices relevant to ER as input to recovery metric methods. 

▪ Visualization of recovery metrics for restoration site(s). 

▪ Analysis of multi-spectral recovery metrics – e.g., spatial or time series clustering. 

Out-of-scope features of the PEOPLE-ER Spectral Recovery tool are: 

▪ Multi-spectral cloud-free compositing to provide the input EO data 

▪ Spatial or temporal delineation of restoration or reference site(s) 

Preconditions 

The tool requires that a user have pre-existing domain knowledge of the restoration sites they wish to 

assess. Specifically, users must have: 

▪ Knowledge and spatial delineation of restoration sites. 

▪ Knowledge of the year of restoration intervention. 

▪ Knowledge of reference period to determine target conditions. 

▪ (Optional) Knowledge and spatial delineation of reference site(s). 

A user must also be able to provide multi-spectral EO data to the tool, related to the following 

preconditions: 

▪ Access to, or ability to produce cloud-free analysis ready data (ARD) Landsat or Sentinel 2 

derived annual time series composites over the restoration and reference sites for multiple 

spectral bands. 

▪ (Optional) Access to, or ability to produce a data mask for masking out undesirable areas (e.g. 

water bodies, naturally unvegetated features, settlements) in the provided time series 

composites. 

2.4 IMPLEMENTATION 

Platform Environment  

The PEOPLE-ER Spectral Recovery tool is developed using the Python 3 programming language 

because it provides ease-of-use, a breadth of high-quality packages, and is now one of the standard 

languages in the world of open-source scientific computing.  

To facilitate scalable analysis, the following third-party Python packages will be used to implement data 

models and spectral recovery algorithms: 
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▪ Dask: open-source package for parallel computing, capable of scaling Python code on multi-

core systems or to distributed clusters in the cloud. 

▪ XArray: open-source package providing label-based data models and operations on top of 

NumPy-like arrays, making N-dimensional data processing easier for users and developers. 

These packages, and any additional packages, are selected as to be platform-independent and 

interoperable with the scientific Python ecosystem and open-source scientific computing initiatives like 

the Pangeo project. Thus, any processing platforms which support similar ecosystems will be able to 

support the PEOPLE-ER Spectral Recovery tool. Specific platforms that should be compatible are 

Microsoft’s Planetary Computer Hub, VTT’s Forestry TEP platform, and the new Copernicus Data 

Access Service (based on information available). 

A User Guide is available at: https://people-er.github.io/Spectral-Recovery/about/  

Inputs 

▪ A cloud-free, ARD Landsat or Sentinel-2 derived multi-spectral annual time series composite. 

▪ Spatial and temporal delineation of a restoration site. 

▪ An optional delineation of a reference target condition, or a historic reference temporal range 

to provide a baseline condition. 

▪ Selection of indices.  

▪ Selection of metrics. 

https://people-er.github.io/Spectral-Recovery/about/
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Workflow 

Figure 1 Vegetation recovery – spectral trajectory tool workflow. 
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Outputs 

▪ Computed recovery metrics for selected indices: RRI, Y2R, R80P, ΔNBRregrowth, YrYr 

▪ Recovery trajectory graphs for restoration sites. 

▪ Raster of restoration site recovery relative to baseline or target conditions for each index/metric 

combination.  

Figure 2 Example output from the Spectral Recovery Tool – raster format. 

 

Figure 3 Example output from the Spectral Recovery Tool – chart format. 
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2.5 LIMITATIONS 

▪ Sensor support – The tool supports Landsat and Sentinel derived data. Support for other 

sensors will be beyond the scope of the toolset, as the formulae for index calculations are 

sensor dependent.  

▪ Spatial resolution – Sentinel and Landsat data are limited to 10 m and 30 m spatial resolutions 

respectively. This may not provide the level of detail necessary for small restoration sites or 

fine-scale analyses, or to reveal the true recovery variation in a landscape. The tool will be best 

applied to landscape approaches, and it is recommended to follow with sampled field-based 

data if used for local restoration efforts to ensure recovery is adequately assessed. 

▪ Spectral information as sole input – Resulting interpretation of ecosystem structural and 

compositional characteristics can only be estimated by using spectral indices as proxies. 

▪ User-provided time series composites – Noise may be introduced into the analysis if 

composites are not high quality. This can be mitigated by users following established pre-

processing composite approaches (e.g., best-available-pixel (BAP), and using cloud-masking 

algorithms such as FMask (Zhu and Woodcock 2012), SEN2COR (Tarrio et al. 2020), LaSRC 

(Vermote et al. 2016; Skakun et al. 2019), MAJA (Hagolle et al. 2010), TMask (Zhu and 

Woodcock 2014), or s2cloudless (Zupanc 2017). 

2.6 TESTING AND VALIDATION 

Evaluation of the vegetation spectral recovery metrics is required to ensure understanding of the linkage 

between spectral measures of forest recovery and manifestations of forest structure and composition.  

Data that can be used for validation and/or testing include: 

▪ Airborne Lidar – Airborne lidar provides the key validation dataset and can be used to 

determine structural benchmarks of recovery. Availability will depend on the validation/test site 

and time-period.  

▪ Vegetation Inventory Data – Availability of the dataset may depend on the testing/validation 

site and time-period. 

▪ Disturbance Polygons – Availability of the dataset may depend on the testing/validation site 

and time-period. 

▪ Forestry spatial data – Availability may vary depending on the testing/validation site and time-

period. 

White et al. (2022) completed validation of the spectral recovery method using Landsat time series, 

NBR as the spectral index, and a two-year pre-disturbance temporal baseline period. Airborne lidar 

data were used generate benchmark thresholds of canopy cover (e.g., >10%) and height (>5 m) to 

assess forest recovery that are related to the minimum values required to satisfy the FAO's definition 

of forest (FAO 2018; White et al. 2018; White et al. 2022).  

PEOPLE-ER Validation is reported in Deliverable D6 (Results and Validation) available from 

https://www.people-er.info/  

https://www.people-er.info/
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2.7 FUTURE WORK 

Future options to improve the initial solution include: 

▪ Expansion of sensor support beyond Landsat and Sentinel-2. 

▪ Inclusion of a time series composite creation tool. 

▪ Integration of other data, such as climate and soil variables.  
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3.0 K-NN ESTIMATION OF FOREST STRUCTURAL 
VARIABLES 

3.1 OBJECTIVE 

The objective of the PEOPLE-ER k-NN tool is to provide a generic tool to conduct k Nearest Neighbour 

(k-NN) estimation of target variables of interest. In the context of ER monitoring, the tool allows wall-to-

wall propagation of the variables of interest using field reference data and selected EO datasets.  

Together with the spectral recovery tool, it provides the PEOPLE ER user with the possibility to 

approximate the ecosystems’ status (e.g., in the form of forest structural variable development) at any 

given time during the recovery process. It allows users to use any available combination of EO and 

auxiliary layers, together with their own or external field reference data. The field reference data can be 

in the form of field plot measurements or forest compartment (stand) level data. 

3.2 SCIENTIFIC BASIS 

There is a long tradition of forest structural variable (e.g., height, diameter, basal area and volume) 

estimation combining field reference data and EO datasets. Satellite based methods for estimation of 

forest structural variables in 10-30 m resolution have been developed since the 1990’s (Tomppo and 

Katila 1991; Tokola et al. 1996; Hame et al. 2013) are still in operational use together with new data 

sources like LiDAR (Kangas et al. 2018). The k-Nearest Neighbor method (Alt 2001) has been widely 

used in forest monitoring (Chirici et al. 2016) and is operationally used for example in the Finnish 

National Forest Inventory (Mäkisara et al. 2022). One of the key benefits of the k-NN method is the 

capability for simultaneous estimation of all variables of interest. This helps to retain natural ecological 

relationships between the variables (e.g., height and volume) in any given point, better than methods 

that estimate one variable at a time. 

The provision of a generic k-NN tool allows users to derive additional information on the status of the 

ecosystem with a variety of datasets. The tool is not limited to any specific type of reference or remotely 

sensed data but can be used with the datasets available for the area of interest. The PEOPLE-ER k-

NN tool should be seen as a supporting tool for the main ecosystem recovery monitoring tools 

developed in the project. This tool can be used to provide further information within and around the 

restoration areas, benefiting from the field reference data the users have collected or that is available 

from public sources. 

The tool is an implementation of a generic non-parametric and distribution-free k-NN method (Alt, 2001). 

The estimates for the target variable values are obtained as linear combinations of target variable values 

in a set of observations selected from a reference feature bank. The reference feature bank should 

contain combinations of reference target variable values with the corresponding EO and auxiliary data 

features. The observations are selected by Euclidean distance on the EO and auxiliary variable space. 

The reference observations with the smallest distances to the target pixel in the EO and auxiliary space 

are selected. Simultaneous estimation of all variables of interest can be conducted. The k-NN is a non-

parametric estimator since estimations can be made without any parameters, as well as distribution-

free estimation method because estimations can be made without any prior distributional assumptions. 

The reference observations can be field plots or stands. 

The k-NN predicted target variable value Yp for pixel p is calculated as:  
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where yi is the target variable value of the ith contributing observation in the reference set, I is the subset 

of nearest observations used for the estimation, and wi,p is the weight of ith contributing observation. In 

the implementation described here, the observations are weighed inversely to the Euclidean distance. 

The Euclidean distance is calculated as: 

 

where xi is the target pixel feature value for feature i and y is the corresponding value for an observation 

in the training feature bank. The number of nearest observations used in the estimation typically varies 

from three to over 15, depending on the number and characteristics of the available field reference data. 

In addition to estimation of the target variable calculated as the weighted mean of the chosen 

observations as described above, the standard deviation of the observations used to derive the pixel 

level estimates is calculated. This provides information on the variability of the observations and thereby 

the uncertainty of the estimation. The standard deviation is calculated as: 

 

where xi is the target variable value for observation i and the x̅ is the mean of the observations used in 

the estimation. 

In addition to the output map layers (i.e. the mean estimate and standard deviation layers), general 

uncertainty metrics are calculated from the feature banks. The user has an option to divide the feature 

bank to training and testing feature banks. The training feature bank is used to predict values for the 

observations in the testing feature bank. The estimations are then compared to the observations to 

calculate Root Mean Square Error (RMSE) and bias of the estimations as: 

                        

where y represents the observed reference values, 𝑦̂ represents the predicted values and n is the 

number of samples. Both RMSE and bias are provided in absolute terms and as % of the mean. All of 

the uncertainty statistics are calculated for each target variable. 

3.3 USE CASES 

The primary use case for the PEOPLE-ER k-NN tool is a user who is monitoring an ecosystem 

restoration intervention and wants to know the past or current status of the ecosystem in the area of 

interest. 

The user may wish to: 

▪ Know the pre-restoration characteristics of the ecosystem. 
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▪ Monitor the development of ecosystem characteristics during the restoration process.  

▪ Compare ecosystem characteristics in the restoration area and in ecosystem outside the 

restoration area. 

In Scope / Out of Scope 

In scope features of the PEOPLE-ER k-NN tool are: 

▪ Generation of pixel-wise estimates of target variable values with the k-NN algorithm using EO 

(and optionally auxiliary) data features together with field reference data. 

Out-of-scope features of the PEOPLE-ER Spectral Recovery tool are: 

▪ Collection, screening, and pre-processing of the field reference data 

▪ Preprocessing of the potential auxiliary datasets  

▪ Creation of the feature bank, which combines target variable values and EO feature values 

(and potential auxiliary feature values)  

Preconditions 

When the k-NN tool is used to support ecosystem restoration the user needs to have pre-existing 

domain knowledge of the restoration sites and other areas they wish to create the target variable map 

over. Specifically, users must have: 

▪ Knowledge and spatial delineation of restoration sites 

▪ Knowledge of the year of restoration intervention 

▪ Representative field reference data collected on a year that also has EO data available. The 

representativeness of the field data is essential. It should cover the entire range of target 

variable values and include typically at least 100 observations. 

In addition, it is a crucial pre-condition that the variable of interest correlates with the EO and/or auxiliary 

data features. Otherwise, the tool does not provide reliable estimates of the target variable (e.g., forest 

height) based on the EO and auxiliary data features. Please see more considerations on the limitations 

of the tool in Section 3.5. 

3.4 IMPLEMENTATION 

Platform Environment 

The implementation follows a generic non-parametric and distribution-free k-Nearest Neighbour method 

(Alt 2001) which has been widely used in forest monitoring. The PEOPLE-ER k-NN tool has been 

implemented on the Forestry TEP online platform (https://f-tep.com/) to allow easy exploitation of Earth 

observation (EO) datasets. It is also provided as a python script package (with example datasets) in the 

PEOPLE-ER github repository (https://github.com/PEOPLE-ER) for flexible implementation by more 

advanced users. A User Guide is available at: https://people-er.github.io/k-NN/  

 

 

https://f-tep.com/
https://github.com/PEOPLE-ER
https://people-er.github.io/k-NN/
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Inputs 

The required inputs can be divided into two categories: 

▪ Input required for the feature bank creation: 

o EO (and any auxiliary feature as desired) layers from the time of the reference data 

collection 

o Representative reference data from the area of interest 

▪ Input required for the k-NN estimation: 

o Selected EO and auxiliary feature layers for the desired date 

o Training feature bank .csv file including the target and EO/auxiliary variables (Figure 4) 

o (Optional) Testing feature bank .csv file 

o Selection of the number of neighbours (k) to be used 

Figure 4 Example of a k-NN tool input feature bank csv file. 

 

Workflow 

The workflow of the process is illustrated in Figure 5. The tool can be run with an EO image and a 

training feature bank. The feature bank can be provided to the user, or the user can create the feature 

bank, e.g., in QGIS by extracting EO feature values to their field data locations. In an optimal case, part 

(e.g., 1/3) of the feature bank is extracted to a testing feature bank, while the remainder (e.g., 2/3) of 

the reference observations are used as training feature bank for the target variable estimation. When 

the feature bank is available and uploaded to Forestry TEP, can be run for any given EO image directly 

on the platform. 

The EO and auxiliary dataset needs to be in .tif format and it needs to contain the same layers in the 

same order as provided in the Feature bank .csv files. The .csv files can be created in any GIS software 

by extracting image band and auxiliary data values for the corresponding target variable values, e.g., 

in pixel or polygon level, depending on the field data area unit. In addition to the comma separated 

target variable and EO feature values, the .csv file needs to include a header row providing the column 

names. EO features are used to search for the closest neighbours to be used in the prediction of the 

target feature values. The EO features and target variable features are listed in the knnsettings.csv file. 
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Figure 5 k-NN tool workflow. 

 

Outputs 

The k-NN tool creates two different types of outputs: 

1. Target variable estimate and standard deviation maps for the area of interest 

2. Accuracy metrics (in case optional testing feature bank provided) 

The output maps include a layer of estimates for each of the forest variables of interest. These maps 

are output in .tif format in the same spatial resolution as the input EO data (Figure 6). In addition to the 

estimate maps, each variable is also accompanied with a layer of standard deviation of the estimates. 

Note that the standard deviation maps are only available in the Forestry TEP version of the tool, not in 

the python code distributed in the GitHub. 

The uncertainty metrics (see Section 3.2) are provided in .csv files. They have been calculated from the 

testing feature bank by using the training feature bank to predict values for the testing feature bank 

items and comparing the predictions to the reference values. Note that in the case of very small testing 

feature bank, the metrics may not be reliable. 
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Figure 6 Example output from the k-NN tool. Input Sentinel-2 image (real colour) 
below and volume estimation map (0-160 m3/ha) on top. 4 x 10 km area in 
Northern Finland. 

 

 

 

3.5 LIMITATIONS 

The tool requires that a user have pre-existing domain knowledge of the restoration sites and other 

areas they wish to create the target variable map over. Specifically, users must have: 

▪ Knowledge and spatial delineation of restoration sites 

▪ Knowledge of the year of restoration intervention 

▪ Representative field reference data collected on a year that also has available EO data 

The representativeness of the field data is essential. It should cover the entire range of target variable 

values and include typically at least 100 observations. Without a representative field reference data, the 

tool will not produce reliable results. Typically, the representative reference data needs to be provided 

by the user. In some cases, suitable open field reference datasets may be available from the area of 

interest. 

The tool does not provide pre-processing of the reference, EO or auxiliary datasets. The user needs to 

create the feature bank .csv file and a corresponding stack of the EO and auxiliary layers. 

In addition, it is a crucial pre-condition that the variable of interest correlates with the EO and/or auxiliary 

data features. Otherwise, the tool does not provide reliable predictions of the target variable (e.g., forest 
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height) based on the EO and auxiliary data features. Similarly, the tool only provides reliable predictions 

for ecosystems which are included in the feature bank. For example, the example feature bank provided 

here with the python code at GitHub only applies for forest ecosystem. Results created with the example 

feature bank are invalid in any other land cover types.  

Furthermore, it is important to note that the levels of reflectance in the EO images used for the tool 

should be similar to levels of the image used to create the feature banks. The user should beware of 

variation in the levels of reflectance, even in Analysis Ready Datasets (ARD), like the Sentinel-2 L2A 

surface reflectance product. Atmospheric and seasonal changes may cause variation in the levels of 

reflectance between images. This type of variation affects the predictions of the k-NN tool. 

Finally, application of a feature bank outside its geographic extent must be conducted with caution. 

Based on an empirical method, the k-NN tool is sensitive to the geographic variation in ecosystem 

characteristics. It is not recommended to apply a feature bank for target variable prediction outside its 

geographical extent. 

3.6 TESTING AND VALIDATION 

The testing and validation of the tool was conducted in two countries: Finland and Romania. The 

validation results are reported in Deliverable D6 (Results and Validation) available from 

https://www.people-er.info/ 

  

https://www.people-er.info/
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4.0 WETLAND FUNCTION RECOVERY 

4.1 OBJECTIVE 

The objective of the PEOPLE-ER Wetland Function Recovery solution is to provide a method for high-

resolution satellite EO data time series analysis to enable the monitoring and comparison of surface water 

dynamics in natural to heavily modified wetland ecosystems. With recent innovation in cloud computing 

and the availability of long-term Synthetic Aperture Radar (SAR) EO datasets at high temporal and spatial 

resolution, the technical objective is to develop analysis tools in such a way that it is not tied to a singular 

EO exploitation platform, but instead can be distributed to a variety of platforms. 

4.2 SCIENTIFIC BASIS OR OTHER ALGORITHMS 

For wetland ecosystems, the location and persistence of surface water (inland and coastal) is a key driver 

of biological diversity and ecosystems services. Restoring of natural wetland inundation function is often 

an important feature of wetland restoration because the hydrological regime drives the nutrient fluxes, 

water quality, and habitat suitability for plant and animal species and other biodiversity. For example, 

enabling reconnection of wetlands within a floodplain and restoring wetland inundation functions can 

be a key indicator of wetland restoration. 

The biological effects of irregular inundation is recognized as a high-priority remote sensing biodiversity 

product, related to the “ecosystem disturbance and habitat structure” remote sensing enabled essential 

biodiversity variables (RS-EBVs) (Skidmore et al. 2021).  

EO time series have a proven capability in the detection of surface water location and vegetation 

inundation seasonality. Several initiatives aimed to use multi-spectral and radar time series (e.g., Joint 

Research Centre (JRC) global surface water permanence dataset based on Landsat time series (Pekel 

et al. 2016) and the ESA financed WorldWater project1 provide valuable information but are limited to the 

detection of surface water. Ecosystem restoration practitioners require tools to assess complex wetland 

ecosystems. However, challenges include working with large volumes of EO data, handling EO data time 

series, the complexity of wetland structure, and methods to assess wetland restoration, i.e., using 

reference sites or reference time periods. Another factor is the inter-annual variability of climate and short 

to long-term responses of wetlands to restoration processes and climate variability. 

SAR sensors are capable of distinguishing open water from other land cover classes relatively well due 

to shallow scattering signature and thus strong contrast with other land cover classes. C-band SAR 

image time series are particularly suitable for mapping water bodies with high accuracy (Lamarche et 

al. 2017). The extent of permanent water bodies and dynamics can be monitored. Recent land cover 

classification experiments with deep learning semantic segmentation models suggest very high 

accuracies can be obtained with dual-pol IW mode Sentinel-1 data. Further improvements can be 

expected from combining SAR and optical datasets for delineating inland water bodies, for example 

with Copernicus datasets (Gao et al. 2018). 

Initial results of a round robin exercise organized within the WorldWater project confirm that high 

accuracies in surface water mapping can be achieved with optical and SAR data. Particularly, optical 

 
 
1 https://worldwater.earth/  

https://worldwater.earth/
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images are better at capturing spatial detail while, SAR data provide a better seasonal characterization 

when looking at the classification performance across several study sites as well as through time. 

By combining both optical and SAR data the PEOPLE-ER wetland function recovery tool aims to provide 

meaningful analyses of wetland patterns and function to restoration practitioners. 

Landscape Structure  

The wetland function recovery tool is object-based rather than pixel-based. The rationale is that natural 

and modified wetland landscapes are often managed in terms of hydrological units (Department of 

Environment and Science, Queensland 2021) and assessing objects can reduce the noise that may be 

associated with pixel based analysis. 

There are numerous image segmentation methods available. An example open algorithm is introduced 

as an optional pre-processing component of the wetland function recovery tool. This is based on cloud-

free Sentinel-2 composite images and a combination of Scharr edge detection and Watershed 

Segmentation (WS), referred to as the CEWS workflow (Watkins and Van Niekerk 2019). Firstly, edge 

layers for each band of each Sentinel-2 composite will be generated using the Scharr algorithm. 

Afterward, the multi-temporal edge layers will be combined into one composite edge layer using equal-

weight summation, to enhance the magnitudes of the landscape boundary. The output of the Scharr 

edge detection algorithm will be reclassified using Jenks’ Natural Breaks (JNB) algorithm. The result of 

this step will be used as the input to the WS algorithm. The objective of the WS algorithm is to recognize 

the high gradient magnitudes (boundaries) that divide low gradient regions (homogenous landscapes). 

However, the WS algorithm is prone to overly segment images and consequently produces many small 

objects. Therefore, the use of JNB will effectively avoid the influence of noise in the edge layer and 

alleviate the over-segmentation issue (Xu et al. 2023). The landscape units extracted by the WS 

algorithm will be converted into vector format for the subsequent analysis. 

See https://people-er.github.io/Wetland-Function-Assessment/02_landscape_segmentation/  

t-distributed Stochastic Neighbor Embedding (t-SNE) and cluster analysis 

t-distributed Stochastic Neighbor Embedding (t-SNE) is a state-of-the-art embedding technique to 

visualize the similarity of temporal patterns (Maaten and Hinton 2008), and can be used to project time 

series onto a 2-Dimensional map. t-SNE outperforms conventional dimensionality reduction methods, 

as it produces low-dimensional representations that preserve the local and global structure of high 

dimensional data, and effectively improves the separability of datapoints (Maaten and Hinton 2008; 

Tang and Carey 2022). Time series sharing similar temporal patterns tend to stay clustered on the t-

SNE map (Tang and Carey 2022). 

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN; McInnes et al, 

2017) is a density-based clustering algorithm widely used for identifying clusters or groups within data, 

especially when dealing with datasets of varying densities and shapes. Unlike traditional clustering 

methods, HDBSCAN integrates density-based clustering principles, allowing it to identify clusters of 

varying sizes while also classifying noise points as outliers. It operates by constructing a hierarchical 

cluster tree based on density-reachability, enabling the algorithm to effectively identify clusters and label 

points as core, border, or noise, providing a comprehensive analysis of complex data structures. 

HDBSCAN's versatility and robustness make it particularly advantageous for uncovering meaningful 

clusters within datasets that may contain irregular shapes or differing densities. In time-series analyses, 

the HDBSCAN algorithm can be employed to identify major temporal patterns within the dataset. 

https://people-er.github.io/Wetland-Function-Assessment/02_landscape_segmentation/
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The algorithm is used in the Wetland Function recovery tool to help identify the time series trends 

present on the landscape. It is assumed that the time series of each cluster (returned by the HDBSCAN 

algorithm) will exhibit a distinctive temporal pattern that can then be attributed with a specific wetland 

function. An average time series can then be generated from the individual time series’ associated to 

each cluster, as the average time series usually shows a more stable temporal trend than any individual 

observation. These average time series can then be used as reference for the wetland functions of 

interest. 

See: https://people-er.github.io/Wetland-Function-Assessment/04_cluster_analysis/  

Dynamic Time Warping 

The Wetland Function Recovery tool classifies landscape objects into specific wetland functions based 

on the degree of similarity between their time series and the reference time series of each wetland 

function. Each landscape object is assigned to the wetland function with the most similar trend. The 

similarity of time series is measured by Dynamic Time Warping (DTW) (Salvador and Chan 2007). The 

calculation is implemented using the fastdw Python library (version 0.3.4). The DTW algorithm returns 

a similarity metric between each object and each wetland function. A similarity metric threshold can 

then be defined by the user, and is used to determine which wetland function each landscape unit 

displays. If a landscape unit has a similarity metric lower than the threshold with all reference time 

series, it will be binned into an “unknown” wetland function. Each landscape unit’s wetland function 

should be determined annually and the change of a landscape unit between wetland functions indicates 

a potential change in wetland function. 

DTW(𝑠, 𝑡) = √∑∑(𝑑(𝑠𝑖 , 𝑡𝑗))
2

𝑚

𝑗=1

𝑛

𝑖=1

 

 

where si and tj denote the elements in the time sequences of [s1 ,s2 ,...,sn ] and [t1 ,t2 ,...,tm], and d(si ,tj) 

represents the edulicadian distance between elements si  and tj.  

See: https://people-er.github.io/Wetland-Function-Assessment/05_calculate_dtw/  

4.3 USE CASES 

The primary use case for the PEOPLE-ER Wetland and Wetness Trends toolset is a user that has 

completed a wetland restoration project targeting the restoration of natural wetland functions.  

The user may wish to: 

▪ Conduct baseline characterization – assess a wetland’s hydrological regime prior to an 

intervention.  

▪ Conduct reference site or target regime characterization – assess a wetland’s hydrological 

regime to use as a reference site.  

▪ Compare restored wetland areas to the pre-restoration reference period or reference sites. 

They will be able to visualize and quantify the similarity of the restored hydrological regime to 

the reference site. 

The length of the time series must capture the periodicity and variability of wetland inundation (key 

target function) and provide the user the ability to identify changes for individual wetland features as 

https://people-er.github.io/Wetland-Function-Assessment/04_cluster_analysis/
https://people-er.github.io/Wetland-Function-Assessment/05_calculate_dtw/
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well as for the entire landscape. Therefore, associated to this use case is the segmentation of the 

wetland landscape into meaningful features or objects for analysis.  

In Scope / Out of Scope 

In scope features of the PEOPLE-ER Wetland and Wetness Trends toolset are: 

▪ Landscape segmentation: demonstrate how to break up the landscape into meaningful units of 

analysis. 

▪ Sentinel-1 time series clustering: demonstrate how to cluster their time series to explore their 

data and better understand existing trends within the landscape of interest. 

▪ Sentinel-1 time series classification: show users how to classify each landscape unit based on 

its time series’ similarity to a reference wetland function. 

Out of scope features of the PEOPLE-ER Wetland and Wetness Trends toolset are: 

▪ Multi-spectral image cloud-free compositing.  

▪ SAR image time series pre-processing and stacking. 

▪ Spatial or temporal delineation of a reference(s) to use as a baseline. 

Preconditions 

▪ User knowledge about and ability to delineate a restoration area 

▪ User knowledge of the date of restoration interventions to determine a reference period (if 

preferred assessment option) 

▪ User knowledge of the date of restoration intervention to determine an adequate reference 

polygon (if preferred assessment option) 

▪ Landscape objects to complete the analysis (can be created, if needed) 

4.4 IMPLEMENTATION 

Platform Environment 

The PEOPLE-ER Wetland and Wetness Trends is developed using the Python 3 programming 

language because it provides ease-of-use, a breadth of high-quality packages, and is now one of the 

standard languages in the world of open-source scientific computing. To facilitate scalable analysis, the 

following third-party Python packages are used to implement data models and Wetland and Wetness 

trend evaluation algorithms: 

▪ Dask: enables work with large datasets by enabling a distributed workflow and taking 

advantage of scalable cloud-computing 

▪ XArray: enables the addition of labels in the form of dimensions, coordinates, and attributes on 

top of NumPy-like arrays making it easier for users to work with multi-band raster datasets 

▪ SciPy – provides a multitude of algorithms that the tool will use, KMeans, t-SNE, and Scharr 

edge-detection 
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These packages, and any additional packages, are selected so as to be platform-independent and 

interoperable with the scientific Python ecosystem and open-source scientific computing initiatives like 

the Pangeo project. Thus, any processing platforms which support similar ecosystems will be able to 

support the PEOPLE-ER Spectral Recovery tool. Specific platforms that are compatible are Microsoft’s 

Planetary Computer Hub, VTT’s Forestry TEP platform, and the new Copernicus Data Access Service. 

Inputs 

▪ Cloud-Free Sentinel-2 images, or Cloud-Free composites, only using the 10m high-resolution 

bands (RGB and NIR) 

▪ Time series of Sentinel-1 images 

▪ An optional reference time series  

Workflow  

The workflow of the process is illustrated in Figure 7. 

Figure 7 Wetland and wetness trends tool workflow. 
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Outputs 

▪ tSNE map displaying the clusters returned by the HDBSCAN clustering method (Figure 8). 

▪ Graphs displaying clustered time series profiles to support interpretation of wetland function 

types (Figure 9). 

▪ Landscape units classified by wetland function type – result of the DTW classification that 

matches each landscape unit’s time series to a reference wetland function time series 

(Figure 10). 

▪ Landscape units whose wetland function have changed over time – a visual layer depicting 

landscape units whose wetland function has changed over the course of the studied time 

period.  

Figure 8 Example output from Wetland Function tool – tSNE map with HDBSCAN 
clustering. 
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Figure 9 Example output from Wetland Function tool – time series of tSNE clusters. 

 

Figure 10 Example output from Wetland Function tool – classification of floodplain 
connectivity. 

 

Limitations 

Limitations of the PEOPLE-ER Wetland and Wetness Trends toolset are: 

▪ Minimum mapping unit – Sentinel-1 and Sentinel-2 provide high spatial resolution 10 m data. 

This is typically sufficient to characterize complex wetland landscapes, but the analysis is best 

implemented for landscape features/objects with a minimum mapping unit of at least 1 ha. 

▪ Vegetation density affects the ability of Sentinel-1 to detect important surface hydrological 

processes, meaning that certain wetland functions may not be captured in densely forested 

areas. The analytical processes should be applicable to other SAR sensors, i.e., L-band with 

longer wavelengths and greater vegetation penetration  
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▪ Inter-annual variability may influence the results of the tool, as the natural functions of each 

individual unit can change based on climate, and weather patterns. 

4.5 TESTING AND VALIDATION 

The testing and validation of the tool was conducted in the Mekong Delta area of Vietnam. The validation 

results are reported in Deliverable D6 (Results and Validation) available from https://www.people-

er.info/ 

4.6 FUTURE WORK 

Future options to improve the initial solution: 

▪ Improved Sentinel-2 segmentation methods and defined methods to validate the results of 

segmentation (e.g., compared to other datasets in a validation area). 

▪ Address inter-annual variability using annual hydrographs (where available). For example, 

consistency with annual hydrographs (particularly during the flood season) could provide 

supplementary information when determining wetland types and functions. 

  

https://www.people-er.info/
https://www.people-er.info/
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