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1.0 INTRODUCTION 

Ecosystem Restoration (ER) is important to reverse biodiversity loss and is a critical element of nature-

based solutions (NBS) for climate change mitigation and adaptation, food security, and disaster risk 

reduction. ER is needed on a large scale to achieve the United Nations (UN) sustainable development 

agenda and as part of the UN Decade on Ecosystem Restoration (2021−2030).  At the Convention on 

Biological Diversity (CBD) COP 15 in Montreal in December 2022, nations adopted a target to “Ensure 

that by 2030 at least 30 percent of areas of degraded terrestrial, inland water, and coastal and marine 

ecosystems are under effective restoration, in order to enhance biodiversity and ecosystem functions 

and services, ecological integrity and connectivity.” 1 

Effective planning, monitoring, and assessment of ER is required to evaluate ecosystem functions and 

to determine whether ER is having the desired impact. ER investments must be data-driven, requiring 

historical information on ecosystem disturbance and degradation, to enable planning of interventions, 

which are then monitored for their impact. There is a huge opportunity for satellite Earth Observation 

(EO) applications for ER, to meet the needs for regular, repeat measures of ER processes over long 

time periods covering large, often remote, areas. 

To support ER investments, innovative methods are required to deliver high-quality EO-based products 

and indicators targeting high-priority biodiversity variables. 

The Pioneer Earth Observation apPlications for the Environment (PEOPLE) ER project financed by the 

European Space Agency (ESA) is a trailblazer project to develop innovative high-quality EO-based 

application products, indicators, and methods, targeting ER research and development (R&D) priorities. 

PEOPLE-ER is led by Hatfield Consultants – a science-driven service-oriented company that builds 

solutions to complex environmental challenges, with a depth of experience in ER projects in Canada 

and around the world. Hatfield is a trusted partner for the development of cutting-edge and practical EO 

technologies. The PEOPLE-ER consortium includes: 

▪ VTT – the remote sensing team at VTT Technical Research Centre of Finland produces EO 

data processing chains for domestic and international users. The team is internationally known, 

particularly for its forest monitoring applications and the Forestry TEP cloud processing 

platform. VTT is ranked among the leading European Research and Technology Organisations 

(RTO). 

▪ University of British Columbia, Faculty of Forestry – Dr. Nicholas Coops leads the Integrated 

Remote Sensing Studio (IRSS) and is a leading international research scientist in the 

application of EO technologies for forest ecosystem assessment and monitoring, including ER 

and the prioritization of methods and products for remote sensing essential biodiversity 

variables (RS-EBVs). 

The Early Adopters are: 

▪ National Institute for Research and Development in Forestry (INCDS) (Romania) – formally 

a member of the consortium, INCDS is the main organisation of research and development in 

forestry from Romania. INCDS is in charge for the forest resources assessment and monitoring 

 
 
1 HYPERLINK "https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022"https://www.cbd.int/article/cop15-cbd-

press-release-final-19dec2022  
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in Romania through National Forest Inventory. INCDS has also secured the support of two 

Romanian NGOs as documented in letters of support: Forestry Society Association and 

Fundatia Grupul Verde Oradea. 

▪ IUCN (Vietnam) – established in 1948, IUCN is an international authority working on a wide 

range of themes related to nature conservation, forests, ecosystem management, protected 

areas, global policy and governance and rights. 

▪ African Parks Network – APN is a leading non-profit conservation organisation that takes on 

the complete responsibility for the rehabilitation and long-term management of national parks 

across Africa in partnership with governments and local communities. 

▪ Society for Ecosystem Restoration in northern British Columbia (SERNbc) (Canada) – a 

key enabler for ER in forested ecosystems affected by cumulative disturbances from forest 

operations, energy exploration, wildfires, and forest pests/diseases. 

▪ Natural Resources Institute (Luke) (Finland) – as one of the biggest clusters of bioeconomy 

expertise in Europe, Luke develops knowledge-based solution models and services for 

renewable natural resources management and supports decision-making in society. 

1.1 SCOPE  

This is document is part of Deliverable 2 (D2) and addresses the State-of-the-art review of relevant EO 

algorithms, methods, models, non-EO data, information technology with direct importance to ecosystem 

restoration. 

2.0 ECOSYSTEM RESTORATION 

ER is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or 

destroyed to restore habitat and ecosystem functions. Restoration activities often initiate a trajectory of 

ecosystem recovery, which can take years, decades, or longer (Society for Ecological Restoration 

2022). 

The are many approaches to ER, from passive approaches which allow vegetation natural regeneration 

(e.g., following a wildfire) to active restoration involving planting or full or partial removal of vegetation 

(planting, removing invasive species). Assisted natural regeneration (ANR) is a more recently 

recognized approach with a blend of active and passive approaches with the goal of eliminating barriers 

and threats to natural recovery. 

Examples of ANR include: 

▪ Preventing degradation (e.g., fire breaks, reducing domestic animal grazing) 

▪ Restoring natural functions (e.g., re-opening an area to flooding or natural occurrence of fire) 

▪ Improving ecosystem structure / configuration (e.g., reducing fragmentation, improving forest 

structural diversity) 

ANR is receiving attention due to it being cost-effective and the potential of NBS to contribute to 

mitigation of climate change through carbon sequestration. Through ANR and taking a landscape 

approach, improvement of the conditions of the ecosystem as well as local communities is an important 

goal and expected to improve permanence and resilience of ecosystem improvements. 
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Forest and Landscape Restoration (FLR) changes the scope and the dimension of restoration. Rather 

than taking a site-level approach, FLR moves towards a landscape view, aiming to restore ecosystem 

services (Laestadius et al. 2015) and improve the livelihoods of humans along the way (WRI 2011). 

Nevertheless, this novel landscape-scale approach does have its complications. Restoring an entire 

landscape implies a diverse suite of approaches and navigating complex relationships with the people 

who live there.  

This increase in scale implies greater focus on the cost associated with restoration. Thus, lead to much 

debate as to whether to include passive regeneration into the equation and count it as part of FLR 

approaches, in part due to the unpredictability of passive regeneration (Chazdon 2008). However, it 

was found that natural regeneration could obtain greater success than human-led interventions, all while 

costing less (Chazdon 2008). Natural regeneration was therefore included as a potential approach when 

conducting FLR (Adams et al. 2016; Lazos‐Chavero et al. 2016).  

Both natural regeneration and active restoration are important when it comes to the climate crisis, 

however, it is important to note that both approaches are long-term processes and need to persist 

across the landscape to achieve their goals (Chazdon 2008). 

EO data and remote sensing approaches allow us to monitor and learn from the successes and failures 

of different ER and FLR initiatives, thus allowing practitioners to make better decisions with more 

information to back them up. 

Monitoring the progress of restoration initiatives relies on understanding the practitioner’s goals, and 

whether they fall under culture, food & products, water, energy, biodiversity, soil, or climate themes 

(FAO and WRI 2019). The FAO and WRI have developed a framework for identifying the priorities and 

indicators for the monitoring of forest and landscape restoration initiatives. It can be summarized in 

three steps (FAO and WRI 2019): 

▪ Determine goals, land-use, and barriers 

▪ Filter by constraints, priorities, and data availability 

▪ Set up a system based on indicators, metrics, and optional indexes 

EO tools can be designed within the context of this framework to maximize the applicability and efficacy 

of the monitoring program, granting valuable context, and expanding the possible indicators with which 

to evaluate restoration initiatives. 

3.0 STATE-OF-THE-ART ANALYSIS 

EO data and associated analytical approaches have demonstrated consistent and transparent 

capabilities for spatially explicit characterization of ecosystem disturbance and recovery processes. EO 

offers a means to assess ecosystem characteristics across larges areas and to provide quantitative and 

transparent data for guiding ER activities.  

This state-of-the-art analysis is structured based on scientific methods and models, algorithms, and 

information technology / platforms, with a focus on the capabilities in the context of datasets and 

methods that ecologists use and value to understand ecosystem condition.  

The essential biodiversity variables (EBVs) provide a common framework of complementary 

biological measurements for capturing considerable biodiversity change and are produced by 
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integrating primary observations from in situ monitoring with remote sensing. A prioritized list of remote 

sensing biodiversity products was developed to improve the monitoring of geospatial biodiversity 

patterns, enhancing the EBV framework and its applicability. Ecosystem structure and ecosystem 

function EBV classes, which capture the biological effects of disturbance as well as habitat structure, 

were shown to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity 

using EO (Skidmore et al. 2021).  

Our review of the state of the art aims to identify the ER methods in context of priority RS-EBVs. Our 

approach is to identify those methods with a sufficient application readiness level to be integrated into 

the platforms, while simultaneously advancing the state of the art for the PEOPLE-ER early adopters. 

3.1 METHODS AND MODELS 

3.1.1 Compositing and Time Series Harmonization 

Time series analysis is fundamental for ER and may be based on annual or seasonal composites of 

multi-spectral or radar data. Creating cloud-free, seasonally coherent composite multi-spectral images 

is a fundamental requirement and often a major challenge for ER practitioners. 

A composite requires two key steps – cloud-detection on a single-scene pixel-basis followed by a 

selection of the best pixel to be part of a composite image. 

Most cloud detection methodologies rely on physical rules and use spectral indices to separate clear 

sky pixels from clouds (Tarrio et al. 2020). Within the optical ranges of the spectrum, one can distinguish 

cloudy pixels from clear pixels by their higher reflectance among most wavelengths. Additionally, the 

thermal band can be useful in the detection of clouds due to their lower temperature when compared 

to clear pixels. Another band which can help improve detection of cirrus clouds is the SWIR (shortwave 

infrared) (Zhu et al. 2015; Zhu et al. 2019). 

Some of the most common cloud detection algorithms include: SEN2COR, FMASK, LASRC, MAJA, 

TMASK, and most recently s2cloudless. These algorithms are explored in more detail in section 3.2.2. 

Median and Mean Composite with Temporal Metrics 

An effective approach to generate a composite is to use statistical measure to select a pixel. Common 

approaches include median and mean. In the case of a median composite, each pixel is selected from 

a range of images to have the median (or middle) value out of all possible values value. An advantage 

is that the median is relatively robust to outliers and the value is a real, observed measurement. Mean 

composites involve taking the average value for each pixel. Unlike the median, the mean composite 

can contain pixel values that were not part of the original dataset. 

Statistical analysis applied to image data from a specific period (e.g., a year or season) can support 

understanding of vegetation seasonality and phenology, which can be useful for ER analysis. For 

example, 75th percentile or max and min values of a vegetation index.  

Best Available Pixel (BAP) 

Scientists at Natural Resources Canada pioneered the utilization of the full time series of Landsat 

satellite data for forest and land cover change monitoring in Canada. Utilizing the full Landsat archive, 

standardized calibration of image products, and increasing computer processing and storage 

capabilities, method have been established to produce large-area, cloud-free, surface reflectance pixel-
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based image composites (White et al. 2014). With BAP composites, change monitoring no longer relies 

on scene-based analysis. Annual BAP composites are surface reflectance composites that use the best 

available pixel observation (from the target year) for any given pixel location, selecting from a temporal 

series of candidate images. Annual composites are produced using a set of specified rules that are 

defined according to the information need. For example, an annual composite may be designed to 

capture a specific time or a limited phenological window (White et al. 2014). The BAP approach 

integrates scores for pixel selection: sensor score, day of year (DOY) score, distance to cloud or cloud 

shadow score, and opacity score. 

The sensor and DOY score are calculated at the image level (i.e., all pixels within the image receive 

the same score), whilst the cloud/cloud shadow and opacity scores are unique to each pixel. All scores 

were then summed to provide a total score for each pixel, and the pixel with the largest score (i.e., the 

BAP) was used in the image composite. 

▪ Sensor score – Pixels from Landsat TM images are assigned a score of 1; pixels in Landsat 

ETM+ images are assigned a score of 0.5. Pre-2003, both sensors receive a score of 1. 

▪ DOY – A score is assigned to all pixels in an image according to the DOY the image was 

acquired relative to the target DOY. 

▪ Distance to Cloud or Cloud Shadow Score – Using the outputs from Fmask2, a distance to cloud 

or cloud shadow score is assigned, whereby pixels identified as clouds or cloud shadows are 

assigned “no data” value and any pixel located at a distance greater than 50 pixels from an 

identified cloud or cloud shadow pixel is assigned a score of 1. Pixels that are not identified as 

clouds or cloud shadows and that are less than 50 pixels away from clouds and cloud shadows 

are assigned a score between 0 and 1. 

▪ Opacity Score – Since hazy images can confound the generation of quality image composites, 

an opacity score was calculated using the atmospheric opacity band output by LEDAPS3. Pixels 

with an opacity value < 0.2 were assigned a score of 1 and pixels with an opacity value > 0.3 

were labelled as “no data”. Pixels with opacity values ≥ 0.2 and < 0.3 were assigned a score 

between 0 and 1. 

The BAP composites have been used in a variety of applications related to land cover and land use 

change and recovery of ecosystems following disturbance. A notable example was the National 

Terrestrial Ecosystem Monitoring System and the “Composite2Change” approach, which applied 

spectral trend analysis to the BAP composites to identify disturbance and recovery of forests 

(Hermosilla et al. 2015). 

Sentinel-2 and Landsat Harmonization  

An increase in the temporal revisit of multi-spectral satellite can increase the likelihood of obtaining 

cloud- and shadow-free observations as well as to improve mapping of rapidly- or seasonally changing 

features.  

 
 
2 C implementation of Fmask as supplied with Landsat imagery: https://www.usgs.gov/core-science-

systems/nli/landsat/cfmask-algorithm 

3 https://www.usgs.gov/media/files/landsat-4-7-collection-1-surface-reflectance-code-ledaps-product-guide 

https://www.usgs.gov/core-science-systems/nli/landsat/cfmask-algorithm
https://www.usgs.gov/core-science-systems/nli/landsat/cfmask-algorithm
https://www.usgs.gov/media/files/landsat-4-7-collection-1-surface-reflectance-code-ledaps-product-guide
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The USGS Harmonized Landsat Sentinel (HLS)4 uses a processing chain involving several separate 

radiometric and geometric adjustments, with a goal of eliminating differences in retrieved surface 

reflectance arising solely from differences in instrumentation. Input data products from Landsat 8 

(Collection 2 Level 1T top-of-atmosphere reflectance or top-of-atmosphere apparent temperature) and 

Sentinel-2 (L1C top-of-atmosphere reflectance) are ingested for HLS processing. A series of 

radiometric and geometric corrections are applied to convert data to surface reflectance, adjust for 

BRDF (Bidirectional Reflectance Distribution Function) differences, and adjust for spectral bandpass 

differences. For more information on HLS products see Section 3.2.1. 

The Copernicus Sen2Like method provides another solution for harmonizing and fusing Landsat 

8/Landsat 9 data with Sentinel-2 data (Saunier et al. 2022). For details on the Sen2Like algorithm see 

Section 3.2.1. 

3.1.2 Vegetation Recovery / Trends 

In forested ecosystems, the analysis of time series satellite data enables monitoring of multiple aspects 

of forest recovery over time: the extent and type of forest disturbance (Senf et al. 2015; White et al. 

2017; Häme et al. 2020; Antropov et al. 2021), the return of vegetation, the re-establishment of trees 

(White et al. 2018), the return of forest structure (Senf et al. 2019), and the return of pre-disturbance 

forest spatial patterns (Hermosilla et al. 2019). 

Inputs to recovery or trend analysis may be annual or seasonal composites or complete time series of 

multi-spectral or radar datasets. 

EBV Class: Ecosystem structure and function 

RS-EBV products:  

▪ (4) Land cover (vegetation type) (recovery is used to classify change in land cover, e.g., bare 

-> shrub -> tree) 

▪ (20) Land surface peak (maximum of season) 

Spectral Recovery 

Time series of remotely sensed imagery can be a useful source of information when seeking to 

understand forest recovery over entire landscapes (White et al. 2018). Data sources such as the 

Landsat time series have allowed researchers study disturbances across forested landscapes and the 

ensuing recovery at diverse scales (regions, countries, and the globe) (Schroeder et al. 2006; Hansen 

et al. 2013; White et al. 2017). To evaluate the recovery of an ecosystem using this data we rely on the 

relationship between spectral indicators and the actual recovery in forest structure (White et al. 2018). 

These indicators are often derived from fitted time-series that use different spectral indexes such as the 

Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), and others.  

Some of these indicators include:  

▪ Years to Recovery (Y2R) – Years to recovery refers to the number of years it takes a pixel to 

recover to 80% of its pre-disturbance value (Pickell et al. 2016; White et al. 2017; White et al. 

 
 
4 https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/harmonized-landsat-sentinel-2-hls-overview/  

https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/harmonized-landsat-sentinel-2-hls-overview/
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2018). To calculate the pre-disturbance value, one uses the average value of the pre-

disturbance value of the previous 2 years for the pixel. This indicator is used as a long-term 

tool to assess forest regeneration, which enables it link spectral recovery with structural and 

compositional recovery of a pixel (White et al. 2018). 

▪ Δ (Index) – The change (Δ) in an index (e.g., NBR) at a specific point in time after recovery is 

another metric that can be used to assess short-term recovery in a pixel (White et al. 2018).  

▪ Recovery Indicator (RI) – The recovery indicator shows the spectral change (Δ) in an index 

over a recovery period as relative to the spectral change (Δ) of the same index during the 

disturbance event (White et al. 2018).  

▪ Relative Spectral Magnitude – Characterized as the magnitude of the recovery relative to the 

spectral value post disturbance (Nguyen et al. 2018). 

Although we have listed four metrics, there are many more metrics available. It is important to note that 

the best indicator of recovery can vary in each landscape, and it is important to tailor one’s approach 

for each use case (Liu et al. 2021). 

Temporal fitting – e.g., LandTrendr 

LandTrendr is a method for land cover change detection that is based on long time series of Landsat 

satellite data, rather than relying on pairwise comparison between two dates (Kennedy et al. 2010). The 

algorithm aims to resolve relevant change of the time series while eliminating noise introduced by 

ephemeral changes in illumination, phenology, atmospheric condition, and geometric registration. 

LandTrendr is based on annual image composites based on multiple images per year (median 

composite approach) followed by the extraction of temporal trajectories of spectral data on a pixel-by-

pixel basis. Temporal segmentation allows capture of slowly evolving processes, such as regrowth, and 

abrupt events, such as forest harvest. A range of parameters and threshold-based filtering is used to 

reduce the role of false positive detections.  

The temporal trajectory of data values is a sequence of connected linear segments bounded by nodes 

or breakpoints referred to as “vertices”. The incoming data values can be spectral bands, derived 

spectral indices, or even other metrics that themselves capture yearly behavior. The only constraint is 

that there can be one value per year. Two phases are used to find vertices. In a forward phase, 

candidate vertices are identified through an iterative anomaly detection criterion, and in a reverse phase 

those candidate vertices are culled using an angle-of-change criterion. Once a user-defined maximum 

number of vertices is identified, straight-line segments are fit to the observed spectral metric values, 

working from the first year in the time series to the last. Fitting uses either simple regression or point-

to-point fitting, constrained to ensure that the starting vertex of a subsequent segment is anchored to 

the ending vertex of the prior segment. From this best-fitting model with the maximum number of 

vertices, an iterative process of vertex-removal and re-fitting is conducted to find successively simpler 

renditions of the time series. At each step in the iteration, goodness of fit statistics are calculated that 

penalize more complex fits, and fitting statistics are compared against a user-defined threshold. Finally, 

from these successively simpler renditions of the time series, the best model is chosen based on the 

best fitting statistic, with a user-defined parameter allowing more complex fits to be chosen if they are 

within a user-defined proportion of the best fit statistic (Kennedy et al. 2018). 

LandTrendr utilizes pre-processed, calibrated, and cloud masked Landsat time series data where a 

single data value per year must be identified (i.e., annual composite). Subsequently, LandTrendr applies 
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a despiking algorithm and a process to address gaps or no data values each year, representing a crucial 

feature of the algorithm. 

Harmonic Modelling 

To understand the effects of natural and anthropogenic disturbances, and the subsequent regeneration 

of a landscape we must first be able to model the seasonality of the vegetation (Zhou et al. 2022).  

Continuous Change Detection and Classification (CCDC) is an example of a temporal segmentation 

algorithm that uses harmonic modelling to distinguish intra-annual change in vegetation due to seasonal 

phenology from gradual trends or abrupt changes (Zhu and Woodcock 2014; Zhu et al. 2020). See 

Section 3.2.2 for details on CCDC.  

A widely recognized method to model time-series observations using harmonic components is the 

Harmonic ANalysis of Time Series (HANTS) model (Menenti et al. 1993; Verhoef, W. 1996; Roerink et 

al. 2000). This model deals with missing data from the time-series using by filling these gaps using an 

Ordinary Least Squares (OLS) approach to calculate significant frequencies which are expected to be 

in the time-series (Zhou et al. 2022). 

However, the HANTS model, when using OLS can be prone to overfitting. To address this limitation 

other regression approaches such as LASSO (Least Absolute Shrinkage and Selection Operator) 

(Tibshirani 1996), and Ridge regression (Hoerl and Kennard 1970) have been developed. The use of 

these approaches often improves the accuracy of the HANTS model for harmonic analysis, although it 

can still struggle with overfitting when dealing with high frequency cycles (Zhou et al. 2022).  

The novel Harmonic Adaptive Penalty Operator (HAPO) (Zhou et al. 2022) was found to show highly 

accurate HANTS model results and outperform OLS, LASSO and Ridge in multi-year time-series 

experiments (Zhou et al. 2022). This regression method can be used with Sentinel-2, Landsat, and 

harmonized multi-sensor time-series data (Zhou et al. 2022).  

Accounting for Climate Variability 

Climate inputs exert considerable influences on ecosystem characteristics and functions. Ongoing 

climate changes have been gradually transforming thermal and hydrological regimes of terrestrial 

ecosystems (Denissen et al. 2022). Conducting a robust climate trend analysis will help to identify 

potential key drivers of ecological changes and understand the mechanisms of ecosystem degradation 

and restoration. 

The Mann-Kendall (MK) statistical test has been commonly applied to detect monotonic trends in 

meteorological and hydrological time series (Zhang et al. 2001; Burn and Hag Elnur 2002; Ford et al. 

2019; Luhunga and Songoro 2020). As a rank-based non-parametric test, it has no requirements of 

homoscedasticity or prior assumptions on the distribution of the data sample (Önöz and Bayazit 2003) 

and is tolerable to missing data (Ford et al. 2019). Original MK test was found subject to serial 

correlation (autocorrelation) within time series, leading to over-rejections of the null hypothesis of no 

trend (Yue and Wang 2002). A modified version of MK test is the Trend-Free Pre-Whitening (TFPW) 

(Yue et al. 2002), which was proposed to eliminate the influence of serial correlation while maintaining 

primary trend structure in the time series. TFPW algorithm is available in a Python package named 

pyMannKendall (Hussain and Mahmud 2019). 
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Although MK test indicates significance level of trends, it does not provide information regarding rate or 

magnitude of changes. As a supplement to MK test, Theil-Sen estimator can be used for estimating 

slope of trends. It is considered more accurate than ordinary linear regression for skewed and 

heteroskedastic data and less sensitive to outliers (Wilcox 1998). Due to its robustness and efficiency, 

Theil-Sen estimator has become one of the most popular non-parametric techniques to estimate linear 

trends for long-term time series of hydrometeorological variables (Luhunga and Songoro 2020; Yao et 

al. 2021 Jun 25) and vegetation indices (Myers-Smith et al. 2020). 

3.1.3 Wetness / Water Variability and Dynamics 

For wetland ecosystems, the location and persistence of surface water (inland and coastal) is a key driver 

of biological diversity and ecosystems services. EO time series have proven capability in the detection of 

surface water location and seasonality, with recent innovation in cloud computing and algorithms 

producing long-term datasets at high resolution. 

SAR sensors are capable of distinguishing open water from other land cover classes relatively well due 

to shallow scattering signature and thus strong contrast with other land cover classes. C-band SAR image 

time series are particularly suitable for mapping water bodies with high accuracy (Lamarche et al. 2017). 

The extent of permanent water bodies and dynamics can be monitored. Recent land cover classification 

experiments with deep learning semantic segmentation models suggest very high accuracies can be 

obtained with dual-pol IW mode Sentinel-1 data. Further improvements can be expected from combining 

SAR and optical datasets for delineating inland water bodies, for example with Copernicus datasets (Gao 

et al. 2018). 

Another relevant EBV in the context of wetness and water variability is surface soil moisture (SSM). 

Monitoring of SSM can improve flood and drought predictions since it affects the amount of water available 

for vegetation growth. Microwave based SSM retrieval (with passive and active microwave sensors) is 

based on the contrast between the dielectric coefficient of water and dry soil. Operational soil moisture 

products rely on radiometer based semiempirical-model predictions at coarse resolution with high revisit 

rate (Kerr et al. 2012), as well as on time series of SAR data for higher resolution products at 1 km pixel 

spacing (Song et al. 2021). One of the central SAR time series mapping approaches is based on relating 

observed change in backscatter intensity to soil moisture changes. (Wagner et al. 1999; Bauer-

Marschallinger et al. 2019), while also several others are known with considerably lower technology 

readiness level requiring interferometric SAR or polarimetric SAR image datasets. 

Global Surface Water Permanence  

Two key initiatives to produce global surface water permanence data are the Joint Research Centre (JRC) 

global surface water permanence dataset based on Landsat time series (Pekel et al. 2016) and the ESA 

financed WorldWater project5.  

WorldWater is developing scientifically robust methods that exploit the full time series of Sentinel-1, 

Sentinel-2 and Landsat satellite imagery to improve the capture the seasonal changes of surface waters, 

 
 
5 https://worldwater.earth/  

EBV Class: Ecosystem function and structure 

RS-EBV product: (2) Biological effects of irregular inundation 

https://worldwater.earth/
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and to complement these observations with radar altimetry measurements of water levels. Initial results 

of a round robin exercise organized within the WorldWater project confirm that high accuracies in 

surface water mapping can be achieved with optical and SAR data. Particularly, optical images are 

better at capturing spatial detail while SAR data provide a better seasonal characterization when looking 

at the classification performance across several study sites as well as through time. Based on these 

findings sensor fused approaches are recommended, with both supervised and unsupervised learning 

can provide very good results. Software implementations are expected to be freely available at the end 

of the project (at this point, the work is unpublished, and software is not available). 

3.1.4 Canopy Density / Cover 

The spatial location of tree canopy and the proportional tree crown coverage per unit area (pixel) is an 

important forest structure parameter. Calculating tree canopy cover before and after intervention, we can 

determine areas of stable, increasing, or decreasing tree canopy and determine the success of ER. 

Important methodological advances account for the seasonality of vegetation phenology, especially 

deciduous trees. An important methodological requirement for tree or canopy cover models is to account 

for the seasonality of vegetation phenology especially deciduous trees. This can be accomplished by 

including optical data captured at different times of year.  

Supervised models are calibrated on manually labelled reference data. The EO4SD-FM project6 

describes a two-step procedure. First, a tree cover mask is produced by pixel-based classification of 

dense time series EO data and then a model is used to correlate EO data to the tree cover density 

values which are represented in a reference data. The reference data could be generated from forest 

inventory plot data (if available), polygons or points derived from visual image interpretation of VHR data, 

canopy metrics generated from the Global Ecosystem Dynamics Investigation (GEDI). Various 

supervised methods for classifying Forest Canopy Cover (FCC) using Sentinel-2 and derived indices 

(NDVI, NDVI-A, NDRE, and NDI45) (Nasiri et al. 2022). They tested and compared Random Forest 

(RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Elastic Net (ENET) 

algorithms, as well as evaluated their variable importance. They determined that the best performing 

algorithm for their use case was the RF model, and that the most important predictor variable was NDVI. 

This approach has the potential to tailor and improve FCC classifications on a site-specific level (Nasiri 

et al. 2022). 

Unsupervised models such as the forest canopy density index that is derived from combination of 

spectral indexes that can be generated from EO data, such as the Advanced Vegetation Index (AVI), 

Bare Soil Index (BI) and Shadow Index (SI) or Scaled Shadow Index (SSI) (Rikimaru et al. 2002; Joshi 

et al. 2006; Loi et al. 2017). 

The benefit of a supervised models is that it is trained used measurements of canopy cover obtained in 

the AOI to be mapped and can integrate multiple EO datasets. However, visual interpretation of canopy 

cover from VHR images is time-consuming and a limited amount of training data can be obtained, which 

will result in models that do not generalize well. Forest plots may be limited, and their availability should 

be confirmed by with the relevant forestry agencies. Whereas, using GEDI forest canopy metrics, a model 

can train more quickly, but GEDI data is likely of lower precision than plot measurements.  

 
 
6 https://www.eo4sd-forest.info/portfolio/ 

https://www.eo4sd-forest.info/portfolio/
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The benefit of unsupervised models is that they are easier to implement and can be readily used over 

large areas to generate wall-to-wall maps. However, even using unsupervised methods, the outputs need 

to be validated to assess performance and calibrated. 

EBV Class: Ecosystem structure 

RS-EBV product: 15 – Plant area index profile (canopy cover) 

3.1.5 Canopy Height 

Consistent, large-scale operational monitoring of forest canopy height is an important task for forest-related 

carbon emissions and quantifying the effectiveness of forest restoration. Recent research into modelling of 

canopy height using satellite EO data includes using ICESat-2 to develop machine learning models for 

Landsat and Sentinel-1 and Sentinel-2 data (Li et al. 2020) and various machine learning and physics 

model-based methods utilizing Landsat, ALOS PALSAR, Sentinel-1, RADARSAT-2 and TerraSAR-

X/TanDEM-X imagery (Praks et al. 2012; Olesk et al. 2016; García et al. 2018; Astola et al. 2019; Antropov 

et al. 2021). Since April 2019, the GEDI lidar instrument onboard the International Space Station has 

collected vegetation structure data in a systematic sampling approach. GEDI represents a unique global 

dataset using which researchers can model canopy height using synoptic EO data. For example, Potapov 

et al. (2021) employed global Landsat analysis-ready data to extrapolate GEDI footprint-level forest canopy 

height measurements, creating a 30 m spatial resolution global forest canopy height map for the year 20197. 

Combined SAR and optical datasets provide not only for interoperability, but also complement each 

other in mapping forest variables (Antropov et al. 2022; Ge et al. 2022). More advanced interferometric 

SAR datasets, such as bistatic interferometric TanDEM-X can be useful in delivering knowledge on 

forest vertical structure, however not readily available for wide-area routine forest mapping. The 

potential of 6-12 days apart repeat pass interferometric Sentinel-1 signatures in forest mapping is limited 

to the relatively dry or winter-season forest (Jacobs et al. 2021; Cartus et al. 2022). 

The state of the art related to analytical methods is rapidly developing with the trend to move beyond 

the widespread application of shallow learning and statistical methods to advanced machine learning 

and deep learning. Recent developments include use of convolutional and recurrent deep learning 

methodologies for mapping forest variables, such as forest tree height, using Sentinel-2 imagery (Mottus 

et al. 2021), Sentinel-1 time series (Ge et al. 2022) and combined satellite SAR and optical datasets 

(Antropov et al. 2022; Ge et al. 2022). Another example is the global canopy height – ETH Zurich – 

probabilistic deep learning model.8  

EBV Class: Ecosystem structure 

RS-EBV product: 14 – vegetation height 

3.1.6 Wildfire  

Fire regime within forest, shrub, grassland, and peatland ecosystems are a key driver of ecosystem 

change, especially given interactions between fire and other disturbances, such as drought and insect 

 
 
7 Global Forest Canopy Height, 2019 | GLAD (umd.edu) 

8 A high-resolution canopy height model of the Earth (langnico.github.io) 

https://glad.umd.edu/dataset/gedi
https://langnico.github.io/globalcanopyheight/
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outbreaks, and climate change. Fire has effects on tree regeneration, species composition, and the 

spatial configuration of habitat and biodiversity. ER may include mapping of burned area and ecological 

impacts, monitoring of vegetation recovery following fire events, and planning and assessing prescribed 

burning. 

Multi-spectral sensors measure the reflectance of surface features covering the short and near infrared 

wavelengths thus providing information on the impact of wildfire on healthy vegetation when pre- and 

post-fire data are compared and analyzed. Well-established, simple methods include the Differenced 

Normalized Burn Ratio (dNBR), which is based on comparing pre- and post-fire NBR images or 

composite images to identify burned areas because of the loss in vegetation and structural reflectance. 

(Cocke et al. 2005; White and Long 2019; Coops et al. 2020). The dNBR method is commonly applied 

to Landsat and Sentinel-2 datasets, producing high spatial resolution data, but frequency of update can 

be a challenge given cloud or smoke. The Sentinel-3 SYN Burned Area product integrates Sentinel-3 

and VIIRS and provides a new global burned area dataset at 300 m. Published under the ESA CCI, the 

new product improves temporal reporting and accuracy compared to other regional scale products 

(Lizundia-Loiola et al. 2022). 

Radar time series may provide additional data to assess wildfire impact through the trajectory of 

backscatter and its linkage to burn severity and forest structure. A Sentinel-1 based index that is derived 

from the Vegetation Structural Perpendicular Index (VSPI) called the R-VSPI (Chhabra et al. 2022). 

The R-VSPI can identify wildfires as well as estimate the impact on a forested landscape by wildfires 

as reliably as the optical VSPI. Using the R-VSPI one can create a denser time-series due to radar’s 

ability to pierce through clouds than the optical VSPI method (Chhabra et al. 2022). Radar’s higher 

sensitivity for vegetation structure also led to greater detail in the assessment of wildfire impact and 

recovery (Minchella et al. 2009; Chhabra et al. 2022). 

Both optical and radar-based approaches have complementary strengths. A mixed radar/optical based 

approach would provide a robust analysis of a study site allowing us to characterize the effects of 

wildfires pre and post disturbance reliably (Chhabra et al. 2022). 

It is important to note that wildfires and their effects both have site specific effects, as well as landscape 

level effects. At a landscape level different fire regimes may contribute to landscape heterogeneity 

which in turn may be a desired restoration outcome for a project (Chia et al. 2016). It is therefore 

important, when monitoring a fire-prone landscape to consider both site-level changes as well as the 

overall landscape’s context.  

EBV Class: Ecosystem structure 

RS-EBV product: (1) Biological effects of fire disturbance (direction, duration, abruptness, magnitude, 

extent and frequency) 

3.1.7 Climate and Other Ancillary Data 

A range of modelling and derived datasets can support assessment and monitoring for ER using 

satellite EO data. The most important datasets related to climate given that trends and short-term 

variability in climate variables can have a large effect on observed and modeled EO parameters. 

The Copernicus Climate Change Service (C3S) provides historical, current, and predicted global 

climate data. ERA5-Land is a state-of-the-art global reanalysis dataset that describes evolution of the 
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water and energy cycles over land. It was generated by the European Center for Medium-Range 

Weather Forecast (ECMWF) as a part of C3S. This dataset includes a total of 50 variables closely 

related to terrestrial ecosystem functions and characteristics, including solar radiation, air temperature, 

precipitation, evaporation, and soil moisture. The period of reanalysis spans from 1950 to present at a 

temporal resolution of an hour. The lengthy, continuous historical data produced by ERA5 in a 

consistent manner are particularly useful for analysis of long-term trends and anomalies of climate 

states (Chiaravalloti et al. 2022; Rolle et al. 2022). ERA5-Land has a global coverage of land area at a 

spatial resolution of 9km. It could be an alternative data source for regions where archived observation 

records are absent. High degree of consistency between ERA5-Land and field observations has been 

reported for air temperature (Yilmaz 2023), precipitation (Lavers et al. 2022), although moderate bias 

may exist for soil moisture in humid regions (Wu et al. 2021). The older version, ERA-Interim, has been 

routinely used for WMO annual assessment and the IPCC assessment of climate changes. ERA5 

provides even more accurate reanalysis hydroclimate variables than ERA-Interim (Betts et al. 2019; 

Gleixner et al. 2020), so it could be a reliable data source for trend analysis of climate variables. 

Another useful climatology dataset is the Global Historical Climatology Network (GHCN) and UK Met 

Office Hadley Centre Integrated Surface Database (HadISD), which provides long-term observed 

records of temperature and precipitation at daily scale. HadISD contains a selection of 9555 stations 

that passed through a standard QC test (Dunn et al. 2022), and GHCN integrated more than 100,000 

stations in 180 countries and territories (Menne et al. 2012). Although they both provide valuable station-

based records to analyze long-term climate trends, the data availability and completeness show great 

continental dependency. There is high density of stations distributed across North America and Europe, 

but observations in Africa are geographically sparse, especially in central Africa. Also, observation 

periods vary considerably among stations, ranging from several years to more than one century. Lack 

of consistent spatial-temporal coverage to construct location-specific time series leads to great 

challenges for climate trend analysis in data-scarcity regions (Mistry et al. 2022). 

The Copernicus Land Monitoring Service (CLMS) provides geospatial information on land cover and 

land use change, vegetation state and water cycle. It provides systematic monitoring of biophysical 

parameters globally every ten days and land cover and land use mapping within Europe and globally.  

Two other prominent land cover datasets are ESA WorldCover and WRI Dynamic World. WorldCover 

is a global land cover map for 2020 and 2021 at 10m resolution, based on Sentinel-1 and Sentinel-2 

data. Dynamic World is a near real-time land use/landcover dataset made with deep learning, based 

on Sentinel-2 Top of Atmosphere imagery. The dataset is produced with Google Earth Engine and AI 

Platform at 10m resolution. 

The CopernicusDEM (Global and European Digital Elevation Model) is another critical dataset for ER 

related analysis and modelling. The Copernicus DEM is provided at three different levels:  

▪ A 10 m resolution European extent DEM 

▪ A 30 m resolution Global extent DEM 

▪ A 90 m resolution Global extent DEM 



 

PEOPLE-ER 14 Hatfield 
D2A: State of the Art Review 

3.2 ALGORITHMS AND LIBRARIES 

3.2.1 Compositing and Time Series Harmonization 

A variety of proprietary/commercial and open-source compositing methods exist to create seasonal or 

annual image composites of Sentinel-2 or Landsat data. A few notable examples are: 

▪ GEE-BAP9 – in 2021, the Natural Resources Canada BAP algorithm was implemented in GEE. 

This GEE application enables the generation of annual BAP image composites for large areas 

combining multiple Landsat sensors and images. 

▪ Sentinel Hub S2cloudless – Sentinel Hub’s s2cloudless is a Python package that can automate 

cloud detection in Sentinel-2 imagery. It uses a LightGMB machine learning model to identify 

clouds in Sentinel-2 imagery with great accuracy. 

▪ GEE compositing – Compositing in GEE is generically done using reducers which can be 

applied to a temporal image stack. Earth Engine can pick the median, maximum or minimum 

value of the stack for each band. 

▪ LT-GEE buildSRcollection – This Landtrendr GEE function builds an annual cloud and cloud 

shadow masked yearly medoid composites of Landsat surface reflectance imagery. 

▪ Batch pixel-based composition algorithm – A batch pixel-based compositing algorithm for 

Landsat was developed and published on the GEE platform (Li et al. 2022). This algorithm uses 

all valid pixels from a reference image for the main portion of the composite and then substitutes 

the missing data with batches of pixels using a priority coefficient model (Li et al. 2022). This 

algorithm requires fewer observations, has less bias, and lowers pixel dispersion and improves 

the future analysis of Landsat images, although it can also be used for the compositing of other 

optical satellite imagery such as Sentinel-2 (Li et al. 2022).  

▪ SEN2COR – The Sentinel 2 Correction algorithm is used by ESA in Sentinel-2 surface 

reflectance products (Tarrio et al. 2020). The algorithm uses a series of spectral thresholds, 

ratios, and indices with the goal of computing cloud probabilities for each pixel (Richter et al. 

2012). To identify cirrus clouds this algorithm relies on two thresholds applied to the cirrus band 

(Tarrio et al. 2020). Cloud shadows are predicted from two probability layers; one geometric 

layer derived from the sun position, zenith angle, sun elevation, and cloud height; the other 

layer is derived from a neural network dark area classification.  

▪ FMASK – The function of mask algorithm was developed as a cloud and cloud shadow 

detection algorithm for Landsat (Zhu and Woodcock 2012). FMASK version 4.0 has integrated 

Global Surface Water Occurrence (GSWO) and a Digital Elevation Model (DEM) to further 

improve detection of cloud and shadows for Sentinel-2 data (Qiu et al. 2023). 

▪ MAJA – MACCS-ATCOR Joint Algorithm is a spectro-temporal method of cloud detection and 

atmospheric correction, meant to be used with both Landsat and Sentinel-2 imagery (Hagolle 

et al. 2010). It is. It used by the French Theia Land Data Center to produce Sentinel-2 surface 

reflectance products (Tarrio et al. 2020). This algorithm classifies low cloud pixels based on 

their spectral differences relative to a reference composite image that contains the most recent 

 
 
9 GitHub – saveriofrancini/bap: Best Available Pixel calculation using Google Earth Engine 

https://github.com/saveriofrancini/bap
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BAP. High clouds are detected using a cirrus band threshold that varies with altitude (Hagolle 

et al. 2010; Baetens et al. 2019; Tarrio et al. 2020). 

▪ Tmask – Tmask is a multi-temporal mask (Zhu and Woodcock 2014). It detects cloud and cloud-

shadow by using Fmask applied to all available images for cloud screening, followed by a 

thresholding in the green band to detect previously misidentified clouds. The expected surface 

reflectance is then estimated for the remaining clear-sky pixels, using a Robust Iteratively 

Reweighted Least Squares (RIRLS) model. Pixels that deviate from the predicted surface 

reflectance are then flagged as either clouds or cloud shadows using thresholding rules. 

▪ LaSRC – Land Surface Reflectance Code is a surface reflectance algorithm for Landsat-8 

(Vermote et al. 2016; Skakun et al. 2019). It has a cloud mask in its quality assurance layer, 

that is produced during the atmospheric correction process. This code uses an implementation 

of Fmask in the C programming language, to identify clouds before estimating reflectance. 

Clouds are classified by calculating and aerosol optical thickness residual using ratios of 

Landsat-8’s blue, red and SWIR bands (Tarrio et al. 2020).  

▪ s2cloudless – Sentinel Hub uses s2cloudless for generation of cloud masks. It relies on 

machine learning techniques and is a single-scene cloud detection algorithm (Zupanc 2017). 

This method assigns a probability of being cloud to each pixel based on the pixel’s spectral 

response. It then uses convolution to consider adjacent pixels when constructing a cloud mask 

of a given scene. 

When s2cloudless was compared with FMASK and Sen2Cor (both single-scene algorithms), using a 

hand labeled dataset as validation (Hollstein et al. 2016), it showed better performance. It had better 

cloud detection rates and lower misclassification rates. The MAJA algorithm was also compared to 

s2cloudless on a small dataset and had a lower cloud and cirrus detection rate. However, it did have a 

lower misclassification rate for land classes as cloud (Zupanc 2017). 

USGS HLS comprises three types of products: “S10” products – atmospherically corrected Sentinel-2 

images in their native resolution and geometry; and the harmonized products “HLSS30” and “HLSL30.” 

These products have been radiometrically harmonized to the maximum extent and then gridded to a 

common 30 m UTM basis using the Sentinel-2 tile system. The S30 and L30 products are resampled 

as needed to a common 30-meter resolution UTM projection and tiled using the Sentinel-2 Military Grid 

Reference System (MGRS) UTM grid. The data generated are available through NASA Earthdata 

Search but note that S10 products are not normally archived. An assessment of spectral 

correspondence between S30 and L30 found high agreement (r= 0.87–0.96) for spectral channels and 

an r = 0.99 for NBR with low relative root-mean-square difference values (1.7%–3.3%) (Wulder 2016; 

Wulder et al. 2021). 

The Sen2Like framework is a scientific and open-source software10. Sen2Like ingests a stack of L1/L2 

S2/LS8 and LS9 products and generates L2H and L2F product types; in the L2H products, the native 

spatial resolutions of input images are preserved, whilst in the L2F products, the resolutions of the 

LS8/LS9 image data are upsampled to the pixel spacing of the relevant S2 band. The validation of the 

ARD shows that the quality of input data is preserved and the inter-calibration between different sensors 

is improved (Saunier et al. 2022). 

 
 
10 https://github.com/senbox-org/sen2like  

https://github.com/senbox-org/sen2like


 

PEOPLE-ER 16 Hatfield 
D2A: State of the Art Review 

3.2.2 Spectral Recovery / Trends 

There are several algorithms available and hosted in GEE and a few open-source Python modules or 

software packages that are relevant to vegetation recovery and trend analysis.  

CCDC/COLD is a temporal segmentation algorithm that uses harmonic modelling to distinguish intra-

annual change in vegetation due to seasonal phenology from gradual trends or abrupt changes (Zhu 

and Woodcock 2014; Zhu et al. 2020). A series of consecutive values that diverge from the harmonic 

is identified as an abrupt disturbance, which would not be expected by the intra- and inter-annual 

change modelled in the harmonic. The harmonic is generated during an initialization period, where a 

minimum of 12 clear pixel values (no cloud or snow contaminated observations) occurring over the 

period of at least one year are used to fit eight model coefficients using Least Absolute Shrinkage and 

Selection Operator (LASSO). The CCDC/COLD algorithm predicts reflectance values for a given band 

and identifies when a series of new data points diverge from this prediction, triggering a temporal break 

(Zhu et al., 2020). The predicted reflectance values account for both intra-annual and inter-annual 

changes, providing a decomposition between seasonal and long-term changes in the reflectance of a 

band or index. The best-known implementation of CCDC/COLD is within GEE. pyCCD is a Python 

implementation of CCDC developed by USGS – The CCD component of the CCDC algorithm is 

converted to create the Python-based CCD (PyCCD) library. This library was created during the 

implementation of CCDC to produce the LCMAP collection1.0 (Xian et al. 2022). This library is a per-

pixel algorithm that outputs the spectral change segments of the time-series input data. 

LandTrendr was originally written in Interactive Data Language (IDL), which limited accessibility and 

scalability of the application. In 2018, LandTrendr was implemented in GEE (Kennedy et al. 2018). The 

GEE platform simplifies pre-processing steps, allowing focus on the translation of the core temporal 

segmentation algorithm. 

The Python module statsmodels provides classes and functions for many statistical models. Among 

them are two functions that can be used for seasonal trend decomposition of time-series data: 

seasonal_decompose (a naïve decomposition method) and Season-Trend Decomposition using 

LOESS (STL) (Cleveland et al. 1990). The STL function automatically detects the data’s frequency and 

returns four plots: 

▪ A curve plotting the observed data 

▪ A curve depicting the data’s trend once the seasonality has been removed 

▪ A curve depicting the seasonality itself 

▪ And the residuals from the model 

Tools such as these allow us to visualize our data before and after the seasonality has been removed. 

This in turn gives a useful view of the importance seasonality may or may not play in the trend underlying 

the data. This kind of insight can be of value when seeking to monitor or plan restoration initiatives. 

HAPO has been made open-source and published in a GIT repository11. 

 
 
11 https://code.usgs.gov/lcmap/research/Harmonic-Adaptive-Penalty-Operator-HAPO-/-/tree/main 

https://code.usgs.gov/lcmap/research/Harmonic-Adaptive-Penalty-Operator-HAPO-/-/tree/main
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3.2.3 Wetness / Water Variability and Dynamics 

Data and software availability situation is complicated. For example, the JRC global surface water 

permanence data is publicly available, but the software code is proprietary. ESA WorldWater project is 

supposed to make the software available to potential users at the time of project completion. Several 

general-purpose semantic segmentation deep learning models that can be used for delineating open 

water bodies are publicly available. 

Regarding surface soil moisture mapping, “Soil MOisture retrieval from multi-temporal SAR data” 

(SMOSAR) code (v2.0) is available. Some code can be provided by authors, e.g., MULESME, but 

requites commercially owned software as its components (Pulvirenti et al. 2018). 

3.2.4 Canopy Density / Cover 

There are multiple canopy density/cover datasets openly available such as the global Tree Canopy 

Cover (TCC) dataset produced by NASA’s Land-Cover and Land-Use Change Program. However, the 

source code for many of the datasets isn’t available. 

GEDI L2B Canopy Cover Vertical Profile – The Canopy Cover Vertical Profile is a dataset derived from 

the GEDI instrument with an average footprint of 25 meters. This product is based on the directional 

gap probability derived from the L1B waveform (Dubayah et al. 2020). 

SentinelHub – The Pseudo Forest Canopy Density (Pseudo-FCD) index is an index derived by 

calculating an Advanced vegetation index (AVI), Bare soil index (BSI), Canopy shadow index (SI), a 

Thermal index and subsequently combining them to create an indicator of Forest Canopy Density. This 

indicator does on occasion struggle with water bodies in the landscape. The source code has been 

shared as a Sentinel-Hub custom script12. 

3.2.5 Canopy Height 

There are several publicly open datasets, often accompanied by ATBDs or published papers, however, 

code availability is limited.  

F-TEP services are proprietary, possibly some of them can be made open, e.g., kNN method (Antropov 

et al. 2017), and several planned methodologies that will be an outcome of ESA Forest Carbon 

Monitoring (Antropov et al. 2022) and ESA RepreSent projects. Within ESA RepreSent, several semi-

supervised and semi-supervised deep learning methodologies will be made openly available during late 

spring 2023.  

Additionally, several general-purpose semantic segmentation or regression deep learning models can 

be used for producing forest variables such as forest tree height, but need representative training data, 

or are not yet validated. 

3.3 INFORMATION TECHNOLOGY / PLATFORMS 

As the volume and velocity of satellite earth observation datasets continues to grow, the technology 

required to manage and process EO datasets also needs to keep pace. Further, advanced EO data 

 
 
12 https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/pseudo_forest_canopy_density/  

https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/pseudo_forest_canopy_density/
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analysis techniques exceeds the capacity and capability of personal computers requiring new 

technologies for EO data analysis.  

To efficiently process large EO datasets, information technology solutions are required that minimize 

data movement and maximize processing capabilities. These solutions are characterized as “EO data 

exploitation platforms” as these computational platforms seek to exploit the value stored in EO datasets 

for various use cases.  

3.3.1 European Approach to EO Data Exploitation Platforms 

In Europe, most EO data exploitation platforms are funded, and to a great extent directed, by the public 

sector, but with substantial input and participation by the private and academic sectors. There is a great 

deal of emphasis put on building capacity in the private and academic sectors, and frequently projects 

will be duplicated across several initiatives to foster this. This public-private business model for EO data 

resource development has been through innovation and industry stimulus projects that typically bring 

together pan-European consortiums that are inclusive of academic institutions and small and medium 

enterprises (SMEs). Many current European EO data exploitation platforms can trace their origins to 

European Commission (EC) research and innovation framework programs (FP), such as Rasdaman13 

which received €1.5M in EC FP4 funding14 between 1995 and 1998. Other European EO data 

exploitation platforms can trace their origin to commercialization activities conducted by ESA, such as 

Terradue15 which traces its origins to the commercialization of ESA’s Grid Processing On Demand16 

(G-POD) system in 200617. National governments in Europe have also sponsored the creation of EO 

data exploitation platforms.  

Thematic Exploitation Platforms 

In 2012 ESA started to develop a variety of EO Exploitation Platforms, starting with the “Super Site 

Exploitation Platform” (SSEP) and the “Exploitation Platform for Soil Moisture”. In 2013 ESA launched 

a program to develop a suite of Thematic Exploitation Platforms (TEPs) which are thematically targeted 

EO data exploitation platforms that provide “collocation of data, processing capabilities, and ICT 

infrastructure, thus providing a complete work-environment for users performing scientific exploitation 

of EO data”18. ESA supported the development of seven TEPs targeting different user communities: 

Coastal, Forestry, Hydrology, Geohazards, Polar, Urban and Food Security. TEPs are just one type of 

EO exploitation platform supported by ESA; Regional Exploitation Platforms (REPs) and Mission 

Exploitation Platforms (MEPs) also exist to serve targeted geographic regions and specific EO missions 

respectively. 

The Forestry Thematic Exploitation Platform (Forestry TEP) is operated by VTT. Target user groups for 

the platform include value-adding service industry, research and academia, large forest owners, forest 

industry and non-governmental organizations (NGOs). Key user needs include up-to-date information 

on forest resources and forest carbon balance, facilitating responsible forest management and the 

 
 
13 https://rasdaman.org/  

14 https://cordis.europa.eu/project/id/20073/results  

15 https://www.terradue.com/  

16 https://gpod.eo.esa.int/  

17 https://gsaw.org/wp-content/uploads/2014/10/2010s11d_brito.pdf  

18 “Implementation of Thematic Exploitation Platforms” Request for Information, ESA, Sept 2013. 

https://rasdaman.org/
https://cordis.europa.eu/project/id/20073/results
https://www.terradue.com/
https://gpod.eo.esa.int/
https://gsaw.org/wp-content/uploads/2014/10/2010s11d_brito.pdf
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carbon trade. Value-adding service providers and researchers can benefit from the development 

features and the API interfaces of the platform to develop and publish remote sensing and forestry 

insight services, enabling to reach new audiences and serve customers globally. 

Forestry TEP – also known as F-TEP – offers access to satellite data, a collection of value adding 

processing services and popular tools. The platform features and processing services can also be 

accessed from external systems via a REST API interface. Importantly, the users can create their own 

processing services using the development environment offered on the platform. The created services 

can optionally be made available to colleagues and partners or all platform users either freely or on a 

licensing basis. Recently, Forestry TEP has been successfully exploited in research projects that are 

building new processing tools and chains on the platform. These projects include Forest Digital Twin 

Earth Precursor (ESA)19, Forest Flux (EU Horizon 2020)20, and Forest Carbon Monitoring (ESA)21. 

To integrate its many Exploitation Platforms, ESA is promoting the EO Exploitation Platform Common 

Architecture (EOEPCA)22. This architecture envisions these platforms as a Network of Resources23 that 

integrates the various exploitation platforms using standardized APIs. In particular, the EOEPCA 

presents an implementation of the recently published OGC Best Practice for Earth Observation 

Application Package by the Open Geospatial Consortium (OGC), facilitating distribution of EO 

applications to various exploitation platforms. In EOEPCA, a key operational element is the Application 

Deployment & Execution Service (ADES). 

The Forestry TEP is currently undergoing major architectural revision to implement the EOEPCA in a 

new Kubernetes based environment. A new processing service concept and developer tooling will be 

introduced, with Docker remaining as the container technology for the services. Release is targeted for 

early 2023, with a plan to maintain the current offering in parallel until all features have been 

implemented. Support and guidance will be provided to users in the transition. 

Copernicus DIAS 

In 2016 ESA announced the “EO Innovation Platform Testbed Poland” (IPT-Poland) initiative to validate 

data distribution to a cloud-based infrastructure to exploit data from the Copernicus Sentinel satellites. 

The successful operation of the IPT-Poland resulted in a 2017 tender for the creation of Copernicus 

Data and Information Access Services (DIAS). A DIAS was envisioned as a “cloud-based one-stop 

shop for all Copernicus satellite data and imagery as well as information from the six Copernicus 

services, that also give access to sophisticated processing tools and resources”24. The DIAS tender 

resulted in five contracts, each valued at €10-15M over 4 years (2018-2021), to consortiums required 

by contract to include SMEs. In the second cycle of Copernicus (2021-2027), only two of the DIAS were 

selected to continue: CREODIAS and WEkEO. 

CREODIAS is a cloud computing system implemented by CloudFerro that provides25: 

 
 
19 foresttwin.org 

20 forestflux.eu 

21 forestcarbonplatform.org 

22 https://eoepca.github.io/  

23 https://eo4society.esa.int/2019/06/07/network-of-resources/  

24 https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Accessing_Copernicus_data_made_easier  

25 https://creodias.eu/what-is-creodias  

https://foresttwin.org/
http://www.forestflux.eu/
https://forestcarbonplatform.org/
https://eoepca.github.io/
https://eo4society.esa.int/2019/06/07/network-of-resources/
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Accessing_Copernicus_data_made_easier
https://creodias.eu/what-is-creodias
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▪ Scalable on-demand OpenStack cloud computing platform for data processing; 

▪ Over 34 PB of Earth Observation data (Copernicus Sentinels, Landsat, Envisat and others); 

and  

▪ Access to array of Platform as a Service applications. 

In the second cycle of Copernicus (2021-2027), CREODIAS together with T-Systems, Sinergise, VITO, 

DLR, ACRI-ST and RHEA will operate a revised “Copernicus Data Access Service”26. In this service, 

T-Systems and CloudFerro will provide the cloud infrastructure, Sinergise and VITO will integrate 

Sentinel Hub and OpenEO data discovery and processing tools, while DLR, ACRI-ST and RHEA will 

provide on-demand processing and access to Copernicus Contributing Missions. The first version of 

this service is expected to be fully operational in June 2023. 

WEkEO is implemented by ECMWF, EUMETSAT, EEA, and Mercator Ocean international. WEkEO 

implements a federated architecture that brings together computing and storage systems from 

CREODIAS, EUMETSAT, ECMWF and Mercator Ocean into a single platform. For data processing, 

dedicated virtual machines of various sizes (2-128 CPUs and 16-4 TB RAM) are available. In 2021 the 

EUMETSAT Council approved a four-party arrangement between EUMETSAT, the European Centre 

for Medium-Range Weather Forecasts (ECMWF), Mercator Ocean International and the European 

Environment Agency to continue to cooperate on WEkEO from 2022 to 202727. Planned improvements 

to WEkEO under the second cycle of Copernicus (2021-2027) have not been released publicly.  

Euro Data Cube  

Euro Data Cube28 (EDC) is a platform integrating EO data access systems, tools for access and 

analysis, and a marketplace for solutions. EDC is funded by ESA and has its roots in the 2017-2020 

DataCube Services for Copernicus (DCS4COP) project funded under Horizon 2020 innovation 

funding29. Data available through the EDC includes all open missions (e.g., Sentinel, Landsat, MODIS, 

etc.), commercial satellites (PlanetScope, Pleiades, SPOT, WorldView, etc.) as well as Level 3 products 

(Copernicus Land Monitoring Services, C3S, etc.). Access and analysis tools include cloud workspaces, 

access to the Sentinel Hub cloud API, batch processing systems and the creation of arbitrary data 

cubes through the xcube open source Python library.  

The Polar Thematic Exploitation Platform (P-TEP) has recently transitioned30 to use the EDC 

infrastructure and services to modernize its’ offerings and to reduce ongoing development costs.  

3.3.2 United States Approach to EO Data Exploitation Platforms 

The United States has long been the world leader in EO data exploitation systems due to its leadership 

in developing space-based systems. In general, the United States’ approach to developing EO data 

exploitation platforms is to increasingly develop these resources on large commercial public cloud 

 
 
26 https://medium.com/sentinel-hub/new-copernicus-data-access-service-to-support-the-ecosystem-for-earth-observation-

412f829355a3  

27 Page 45 of https://www-cdn.eumetsat.int/files/2022-07/EUMETSAT%20Annual%20Report%202021.pdf  

28 https://eurodatacube.com/ 

29 https://cordis.europa.eu/project/id/776342 and http://www.dcs4cop.eu/ 

30 https://eo4society.esa.int/2021/12/14/polar-tep-evolution-benefits-from-euro-data-cube/  

https://medium.com/sentinel-hub/new-copernicus-data-access-service-to-support-the-ecosystem-for-earth-observation-412f829355a3
https://medium.com/sentinel-hub/new-copernicus-data-access-service-to-support-the-ecosystem-for-earth-observation-412f829355a3
https://www-cdn.eumetsat.int/files/2022-07/EUMETSAT%20Annual%20Report%202021.pdf
https://cordis.europa.eu/project/id/776342
https://eo4society.esa.int/2021/12/14/polar-tep-evolution-benefits-from-euro-data-cube/
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operators such as AWS, Google Cloud and Microsoft Azure. Cloud migration projects by NASA, USGS 

and NOAA are indicative of this approach. 

To manage the wealth of EO data being generated, NASA operates a network of 12 Distributed Active 

Archive Centers (DAACs) to host and make available EO data. These DAACs have annual budgets of 

over US$79 million31 and host data and computation systems in data centers owned and operated by 

NASA. In 2016 NASA began a system evolution project called “Earthdata Cloud”. The goal of the 

Earthdata Cloud project is to “develop, test, and deploy commercial cloud environments to realize 

storage, processing, and operations efficiencies; improve cross-DAAC collaboration; and provide new 

data access and services.”32 In 2018, NASA entered into a 5-year, $65 million task order with AWS to 

support the Agency’s evolution to the public cloud. As part of this move to the public cloud, the Global 

Hydrology Resource Center DAAC (GHRC DAAC) was selected as the first DAAC to migrate to AWS 

and is now operating (as of March 2020) in the cloud in parallel with on-premises systems. While NASA 

primarily uses AWS, it also has partnerships with Google and Microsoft to make NASA science datasets 

available on the Google Cloud, GEE and Azure. 

NASA has sponsored the development of a number of open source software systems to assist with EO 

data ingestion, management and analysis. Two notable NASA sponsored projects are Project Cumulus 

and Pangeo: 

▪ Project Cumulus33 uses AWS specific technologies to provide: data acquisition from data 

providers; data ingest; harvest, creation, and publication of dataset metadata to the Common 

Metadata Repository; storage and distribution of data, including disaster recovery; and 

publication of metrics to a federated Metrics System. Using Project Cumulus the GHRC DAAC 

is now operating cloud-native functions on AWS. 

▪ Pangeo34 is a project that is developing and supporting a suite of interconnected software 

packages that enable scalable geoscience data analytics. Pangeo maintains an infrastructure 

neutral approach (it supports most commercial cloud vendors along with high performance 

computing [HPC] systems) and aims to develop a cloud-native open architecture that can 

conduct distributed processing across HPC and cloud systems. Although primarily funded and 

developed by US institutions, the Pangeo project has several international collaborations 

including with CNES and the UK Met Office’s Informatics Lab. 

In 2015, the US National Oceanic and Atmospheric Administration (NOAA) initiated a project called the 

“Big Data Project”. The goal of this project is to provide public access to NOAA's open data on 

commercial cloud platforms through public-private partnerships. Initially this program partnered with five 

commercial entities (AWS, Google Cloud, IBM, Microsoft Azure, and the Open Common Consortium)35, 

and was modified in late 2019 to be with 3 entities (AWS, Google Cloud, and Microsoft Azure)36. 

Through this program, the public can access NOAA data through the selected cloud providers for free 

while only paying for the compute and private storage resources. 

 
 
31 Page 10 of https://www.oversight.gov/sites/default/files/oig-reports/IG-20-011.pdf  

32 https://www.oversight.gov/sites/default/files/oig-reports/IG-20-011.pdf  

33 https://github.com/nasa/cumulus/ and https://nasa.github.io/cumulus/  

34 https://pangeo.io  

35 https://www.noaa.gov/organization/information-technology/evolution-of-big-data-program  

36 https://www.noaa.gov/media-release/cloud-platforms-unleash-full-potential-of-noaa-s-environmental-data  

https://www.oversight.gov/sites/default/files/oig-reports/IG-20-011.pdf
https://www.oversight.gov/sites/default/files/oig-reports/IG-20-011.pdf
https://github.com/nasa/cumulus/
https://nasa.github.io/cumulus/
https://pangeo.io/
https://www.noaa.gov/organization/information-technology/evolution-of-big-data-program
https://www.noaa.gov/media-release/cloud-platforms-unleash-full-potential-of-noaa-s-environmental-data
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In 2017 the US Geological Survey (USGS) began the process of transitioning Landsat data storage and 

processing to take advantage of cloud architectures37. Using the cloud the USGS seeks to change the 

way that Landsat data is used – transitioning away from a download model to a model that uses the full 

Landsat archive. To minimize risks, the USGS will “be implementing Landsat’s cloud architecture using 

a hybrid approach that includes the USGS Cloud Hosting Solutions (CHS) program and existing Earth 

Resources Observation and Science (EROS) Center private cloud capabilities, including network, 

compute, and storage resources”38. 

3.3.3 Australian Approach to EO Data Exploitation Systems 

In Australia, the development of EO data exploitation platforms are tied into the ongoing investment and 

development of Digital Earth Australia (DEA). DEA is an Australian government investment focused on 

increasing the utilization of Earth Observation data across Australia and is one of seven priorities stated 

in the Australian Space Agencies’ 2019-2028 Space Strategy39. It is a program covering access to data, 

along with outreach and education activities.  

Using high performance computing power provided by the Australian National Computational 

Infrastructure and commercial cloud computing platforms (a hybrid-cloud approach), DEA organizes 

and prepares EO data into stacks of consistent, time-stamped observations that can be quickly 

manipulated and analyzed to provide information about a range of environmental factors such as water 

availability, crop health and ground cover.  

A key goal of DEA is to enable the Australian spatial industry to exploit the full value of EO information 

to enhance their business and be competitive in global markets40. DEA is expected to enable Australian 

small businesses and industry to more readily access near real time satellite data and derived 

information to innovate and create new products. DEA regularly publishes41 updates to its program’s 

roadmap allowing projects, product improvements and user engagement activities to be easily 

monitored. 

The technology underpinning DEA is the open source Open Data Cube42 system. Open Data Cube 

originally was developed purely by GeoScience Australia but is now supported by five other institutional 

partners: NASA/Committee on Earth Observation Satellite (CEOS), United States Geological Survey 

(USGS), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Catapult Satellite 

Applications, and Analytical Mechanics Associates (AMA). Initially, Open Data Cube could only be used 

on the Australian National Computational Infrastructure HPC system, but recent advances have allowed 

the system to be easily installed on AWS using the “Cube in a box” system43. 

 
 
37 http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-

49/1.%20Tuesday%20April%2021/20200421T1150_Data%20Interoperability-Landsat%20in%20Cloud.pdf  

38 https://www.usgs.gov/news/landsat-data-moving-public-cloud-early-2020  

39 https://publications.industry.gov.au/publications/advancing-space-australian-civil-space-strategy-2019-2028.pdf  

40 https://www.ga.gov.au/__data/assets/pdf_file/0006/94056/DEA-Program-Roadmap-May-2020.pdf  

41 https://www.dea.ga.gov.au/news/  

42 http://www.opendatacube.org/  

43 https://www.opendatacube.org/ciab . The Cube in a Box system notably provides a “magic link” to launch an Open Data 

Cube instance on your own AWS resources with a single click: https://github.com/opendatacube/cube-in-a-box#magic-link  

http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-49/1.%20Tuesday%20April%2021/20200421T1150_Data%20Interoperability-Landsat%20in%20Cloud.pdf
http://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-49/1.%20Tuesday%20April%2021/20200421T1150_Data%20Interoperability-Landsat%20in%20Cloud.pdf
https://www.usgs.gov/news/landsat-data-moving-public-cloud-early-2020
https://publications.industry.gov.au/publications/advancing-space-australian-civil-space-strategy-2019-2028.pdf
https://www.ga.gov.au/__data/assets/pdf_file/0006/94056/DEA-Program-Roadmap-May-2020.pdf
https://www.dea.ga.gov.au/news/
http://www.opendatacube.org/
https://www.opendatacube.org/ciab
https://github.com/opendatacube/cube-in-a-box#magic-link
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DEA stores a range of data products on Amazon Web Service’s S3 with free public access44. Tools 

available to end-users of DEA include a Jupyter-based sandbox, STAC metadata services, a web-map 

explorer interface, and OGC data access services.  

3.3.4 Public Cloud Provider EO Platforms 

Public cloud providers have seen the opportunity to use their cloud computing platforms for EO data 

storage and analysis. Systems created by the major public cloud providers include the Planetary 

Computer from Microsoft, GEE, and Earth on AWS. 

Microsoft Planetary Computer is a platform created by Microsoft that brings together an extensive 

EO data archive together with Jupyter lab interfaces linked to scalable EO data analytics using the Dask 

python library. The Planetary Computer provides direct access in object storage to Sentinel-1 GRD and 

RTC processed data, Sentinel-2, MODIS, Landsat 5 to 8, and Planet data (NICFI), among numerous 

other datasets. Microsoft has embraced the ideas and techniques pioneered by Pangeo, which includes 

the use of STAC for cataloging and querying data, storing analysis-ready data in blob storage, and 

providing Jupyter-based computation and analysis environments linked to Dask clusters for scalable 

data analysis close to the data. While currently in a public preview that provides free access to all users 

(commercial and non-commercial), it is expected that the Planetary Computer will eventually require 

payment to access computational resources. All systems used to run the Planetary Computer are open 

source45. 

Google Earth Engine (GEE) is the most established EO cloud platform developed by Google. Users 

interact with the platform via the Earth Engine Javascript Code Editor or Javascript and Python API 

using the Earth Engine data catalog. GEE is evolving from a non-commercial platform mainly used by 

research scientists to a commercial subscription platform. GEE is a proprietary platform that is not open 

source resulting in users being locked-into only using GEE.  

AWS has developed Earth on AWS, a registry of open geospatial data that supports developers to 

build applications using AWS cloud computing infrastructure. The Earth on AWS program provides free 

hosting (on AWS S3 object storage buckets) of satellite EO datasets which can then be exploited by 

implementing cloud-computing systems next to these existing data stores. The implementation of these 

computational systems is not provided by AWS and must be implemented from scratch by the user.  

3.3.4.1 Related Public Cloud EO Data Exploitation Platforms 

Several notable EO Data Exploitation Platforms have been created based on the above noted public 

cloud platforms. These include SEPAL and the Sentinel Hub. 

SEPAL is a free, open-source cloud-computing platform created and operated by the Forestry 

Department of the United Nations Food and Agriculture Organization (FAO). The SEPAL platform 

provides users access to geospatial data resources (either via the GEE data catalogue or user-provided 

data) and resources to process these data to produce useful information. SEPAL currently “resides” in 

the Amazon Web Services (AWS) ecosystem and makes use of AWS cloud instances that can be used 

to process data using pre-programmed SEPAL applications or your own code (in R, Python or in the 

 
 
44 https://docs.dea.ga.gov.au/setup/AWS/data_and_metadata.html  

45 https://github.com/microsoft/PlanetaryComputer  

https://docs.dea.ga.gov.au/setup/AWS/data_and_metadata.html
https://github.com/microsoft/PlanetaryComputer
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terminal). SEPAL is also closely linked to GEE and largely relies on GEE for scalable data processing46. 

Due to its links with FAO and the OpenForis suite of tools, many government agencies47 around the 

world actively use SEPAL.  

Sentinel Hub is a flagship European example of a cloud platform built on AWS, leveraging Earth on 

AWS datasets. Created by Sinergise (of Ljubljana, Slovenia) the Sentinel Hub provides a cloud-based 

data API that removes the complexity of processing large volumes of satellite data. The Sentinel Hub 

website also provides two web applications, a “Sentinel Playground” and an “EO Browser” both of which 

are built on top of their EO data API. The Sentinel Hub API implements the WMS, WCS and WMTS 

OGC protocols, but prefers that its’ proprietary APIs be used by most users. Data processing commands 

sent to the Sentinel Hub API must use custom “eval scripts” which use the javascript language but use 

structures only available to the Sentinel Hub. The Sentinel Hub API forms key parts of other platforms, 

such as the EDC and can be found on most DIAS, most notably CREODIAS.  

3.3.5 Standardization of EO Analytic Applications  

Recent initiatives aim to allow EO application developers to create their application in such a way that 

it is not tied to a singular EO exploitation platform, but instead can be distributed to a variety of platforms. 

By implementing the algorithms or applications according to an open standard, the hope is that the 

applications will not be locked into a single EO exploitation platform but instead be portable to a variety 

of competing platforms. 

Beyond portability, the use of open standards also allows for a future of distributed processing, where 

a processing workflow can constitute piece solutions on multiple platforms, working in sequence (or 

even in parallel in complex workflows) to achieve the end result. 

OGC Earth Observation Application Package 

The Open Geospatial Consortium (OGC) published in 2021 the Best Practice for Earth Observation 

Application Package (OGC 2021)48. This document describes the approach taken by ESA’s Earth 

Observation Exploitation Platform Common Architecture (EOEPCA) project to package EO applications 

and deploy them to remote platforms. Inside the EOEPCA project, application packages are handled 

by the Execution Management Service (EMS) and Application Deployment & Execution Service 

(ADES). Technically, EO application packages rely on the Common Workflow Language (CWL) and 

the SpatioTemporal Asset Catalog (STAC) specifications, docker containers and the OGC API – 

Processes standard. 

The use of the EO Application Package standard was tested in the OGC’s Earth Observation 

Applications Pilot which was conducted between December 2019 and September 2020. Results of this 

pilot49 showed the EO Application Package system to be functional, although further work was needed 

to make systems operational. User uptake of the EO Application Package standard appears to be 

limited, potentially due to the complexity of defining EO application packages. 

 
 
46 https://docs.sepal.io/en/latest/setup/gee.html  

47 For a partial list of OpenForis users, see https://openforis.org/collaborators/  

48 https://docs.ogc.org/bp/20-089r1.html  

49 Full engineering reports from the pilot study are available online: https://www.ogc.org/projects/initiatives/eoa-pilot  

https://docs.sepal.io/en/latest/setup/gee.html
https://openforis.org/collaborators/
https://docs.ogc.org/bp/20-089r1.html
https://www.ogc.org/projects/initiatives/eoa-pilot
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VTT is developing an EO Application Package compliant execution environment on the Forestry TEP. 

This service, along with other EOEPCA capabilities, is expected to be operational in 2023. 

OpenEO 

The genesis of the OpenEO project started in 2016 with the idea that a common standard interface 

could be defined to allow EO analysis programs to run across a wide variety of cloud computing 

systems. Initially funded by a Horizon2020 grant, the OpenEO project has designed a standard server 

API which is interacted with by R, Python or Javascript libraries. By implementing the server API on 

multiple cloud computing systems (including systems like CREODIAS, EODC, GEE and VITO’s 

Terrascope), cloud system independent analysis has been showcased. 

User uptake of the OpenEO standard appears to be growing, although is potentially limited by the need 

for users to learn a new way of accessing and processing EO data. Use of OpenEO will be increasing 

due to its inclusion in the Copernicus Data Access Service. 

3.3.6 Scalable/Parallel Processing 

Just as the volume of satellite data continues to grow, so does the need to process data in a performant 

manner. To process a time series of satellite data over a large area, scalable computational systems 

are required.  

In computational systems, there are two methods to scale resource: vertically or horizontally. Scaling 

vertically typically means adding more resources (CPU, RAM, storage, network) to a single machine. 

Scaling horizontally adds multiple machines that are then tasked to run analysis in parallel. 

GEE and Rasdaman provide abstractions on top of scalable parallel processing systems such that 

analysts and users do not need to understand the complexities of parallel processing being undertaken. 

HPC systems use job submission/management systems such as SLURM, SGE, TORQUE, LSF, 

DRMAA and PBS to standardize the distribution processing tasks to parallel computing systems. 

The Pangeo initiative advocates a combination of Kubernetes for container orchestration and horizontal 

scaling, Dask for distributed compute, and Jupyter notebooks to provide a user interface for performing 

analyses. Kubernetes is a popular open-source system for automating deployment, horizontal scaling, 

and management of containerized applications. Dask is a distributed system which can scale efficiently 

from a single computer to hundreds of servers using horizontal scaling. Dask uses regular Python code 

and Python APIs to scale the work for existing Python structures (like NumPy arrays and Pandas 

dataframes) concurrently. Microsoft has embraced the Pangeo initiative for its Planetary Computer 

platform. 

Commercial cloud providers also provide specialized interfaces to horizontal scaling infrastructure, all 

of which can be used to analyze satellite datasets in a scalable manner, while hiding the complexity of 

parallel processing: 

▪ Microsoft Azure has Azure Databricks, Batch, Azure Machine Learning, HDInsight, and Azure 

Analysis Services; 

▪ Google Cloud has BigQuery, Batch, Dataflow and Dataproc; and  

▪ AWS has Amazon Athena, Amazon EMR and Amazon SageMaker. 
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The Forestry TEP supports parallel processing through dynamic assignment of processing jobs to 

virtual machines (VM), with a single VM potentially sharing multiple jobs, depending on the 

configuration. Processing jobs are executed in parallel using the configured resource pool and queued 

if the full capacity of the pool is reached. 

3.3.7 User Interfaces and Integrations 

Industry and government usually have pre-existing applications for visualization and manipulation of 

geospatial datasets. Common applications include ArcGIS Online, ArcGIS Desktop, and QGIS. Web-

based data visualization dashboards are often created to provide users with the interface to explore 

complex, large datasets, using tools such as with Tableau, ArcGIS web apps, Microsoft PowerBI and 

other specialized enterprise resource management systems. Many of these applications seek to provide 

a common operating picture by integrating data from multiple sources, visualizing datasets, and 

providing action tracking.  

To integrate datasets from multiple data sources, application programming interfaces (APIs) are 

commonly used. Previously APIs used Extensible Markup Language (XML) formats to interchange 

data, while modern interfaces use JavaScript Object Notation (JSON). To structure the APIs, XML-

based interchanges typically were structured using the Simple Object Access Protocol (SOAP) 

standard, while modern JSON-based interchanges typically use the Representational state transfer 

(REST) architecture. To achieve higher performance, modern data interchange systems implement the 

gRPC Remote Procedure Call (gRPC) framework which enables low latency, highly scalable, 

distributed systems. 

For geospatial systems, the OGC sets standards for implementing geospatial data-interchange 

systems. In recent years OGC standards have been modernized moving from XML based interchanges 

to modern REST/JSON interchanges. For example, to send raster data between systems the OGC 

previously developed the Web Coverage Service (WCS) specification. Recently the OGC has worked 

to modernize this WCS protocol which is now called OGC API-Coverages. 
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